This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2008

1992 China Team Selection Test, 3

For any prime $p$, prove that there exists integer $x_0$ such that $p | (x^2_0 - x_0 + 3)$ $\Leftrightarrow$ there exists integer $y_0$ such that $p | (y^2_0 - y_0 + 25).$

2003 National Olympiad First Round, 18

What is the least integer $n>2003$ such that $5^n + n^5$ is a multiple of $11$? $ \textbf{(A)}\ 2010 \qquad\textbf{(B)}\ 2011 \qquad\textbf{(C)}\ 2012 \qquad\textbf{(D)}\ 2014 \qquad\textbf{(E)}\ \text{None of the preceding} $

2010 Contests, 1

Prove that in each year , the $13^{th}$ day of some month occurs on a Friday .

2012 Indonesia TST, 4

Determine all integer $n > 1$ such that \[\gcd \left( n, \dfrac{n-m}{\gcd(n,m)} \right) = 1\] for all integer $1 \le m < n$.

1999 National Olympiad First Round, 34

For how many primes $ p$, there exits unique integers $ r$ and $ s$ such that for every integer $ x$ $ x^{3} \minus{} x \plus{} 2\equiv \left(x \minus{} r\right)^{2} \left(x \minus{} s\right)\pmod p$? $\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ \text{None}$

2011 Spain Mathematical Olympiad, 3

The sequence $S_0,S_1,S_2,\ldots$ is defined by[list][*]$S_n=1$ for $0\le n\le 2011$, and [*]$S_{n+2012}=S_{n+2011}+S_n$ for $n\ge 0$.[/list]Prove that $S_{2011a}-S_a$ is a multiple of $2011$ for all nonnegative integers $a$.

2003 France Team Selection Test, 1

A lattice point in the coordinate plane with origin $O$ is called invisible if the segment $OA$ contains a lattice point other than $O,A$. Let $L$ be a positive integer. Show that there exists a square with side length $L$ and sides parallel to the coordinate axes, such that all points in the square are invisible.

1999 CentroAmerican, 5

Let $a$ be an odd positive integer greater than 17 such that $3a-2$ is a perfect square. Show that there exist distinct positive integers $b$ and $c$ such that $a+b,a+c,b+c$ and $a+b+c$ are four perfect squares.

2012 South East Mathematical Olympiad, 1

A nonnegative integer $m$ is called a “six-composited number” if $m$ and the sum of its digits are both multiples of $6$. How many “six-composited numbers” that are less than $2012$ are there?

2009 China Team Selection Test, 2

Find all integers $ n\ge 2$ having the following property: for any $ k$ integers $ a_{1},a_{2},\cdots,a_{k}$ which aren't congruent to each other (modulo $ n$), there exists an integer polynomial $ f(x)$ such that congruence equation $ f(x)\equiv 0 (mod n)$ exactly has $ k$ roots $ x\equiv a_{1},a_{2},\cdots,a_{k} (mod n).$

2015 AMC 12/AHSME, 1

What is the value of $2-(-2)^{-2}$? $ \textbf{(A) } -2 \qquad\textbf{(B) } \dfrac{1}{16} \qquad\textbf{(C) } \dfrac{7}{4} \qquad\textbf{(D) } \dfrac{9}{4} \qquad\textbf{(E) } 6 $

2011 Romanian Masters In Mathematics, 3

The cells of a square $2011 \times 2011$ array are labelled with the integers $1,2,\ldots, 2011^2$, in such a way that every label is used exactly once. We then identify the left-hand and right-hand edges, and then the top and bottom, in the normal way to form a torus (the surface of a doughnut). Determine the largest positive integer $M$ such that, no matter which labelling we choose, there exist two neighbouring cells with the difference of their labels at least $M$. (Cells with coordinates $(x,y)$ and $(x',y')$ are considered to be neighbours if $x=x'$ and $y-y'\equiv\pm1\pmod{2011}$, or if $y=y'$ and $x-x'\equiv\pm1\pmod{2011}$.) [i](Romania) Dan Schwarz[/i]

PEN E Problems, 11

In 1772 Euler discovered the curious fact that $n^2 +n+41$ is prime when $n$ is any of $0,1,2, \cdots, 39$. Show that there exist $40$ consecutive integer values of $n$ for which this polynomial is not prime.

2010 Moldova Team Selection Test, 1

Find all $ 3$-digit numbers such that placing to the right side of the number its successor we get a $ 6$-digit number which is a perfect square.

2013 Purple Comet Problems, 7

Find the least six-digit palindrome that is a multiple of $45$. Note that a palindrome is a number that reads the same forward and backwards such as $1441$ or $35253$.

2009 National Olympiad First Round, 18

$ 1 \le n \le 455$ and $ n^3 \equiv 1 \pmod {455}$. The number of solutions is ? $\textbf{(A)}\ 9 \qquad\textbf{(B)}\ 6 \qquad\textbf{(C)}\ 3 \qquad\textbf{(D)}\ 1 \qquad\textbf{(E)}\ \text{None}$

2017 Harvard-MIT Mathematics Tournament, 9

The Fibonacci sequence is defined as follows: $F_0=0$, $F_1=1$, and $F_n=F_{n-1}+F_{n-2}$ for all integers $n\ge 2$. Find the smallest positive integer $m$ such that $F_m\equiv 0 \pmod {127}$ and $F_{m+1}\equiv 1\pmod {127}$.

1999 IMO Shortlist, 6

Prove that for every real number $M$ there exists an infinite arithmetic progression such that: - each term is a positive integer and the common difference is not divisible by 10 - the sum of the digits of each term (in decimal representation) exceeds $M$.

2012 Federal Competition For Advanced Students, Part 1, 2

Determine all solutions $(n, k)$ of the equation $n!+An = n^k$ with $n, k \in\mathbb{N}$ for $A = 7$ and for $A = 2012$.

1994 Irish Math Olympiad, 4

Consider all $ m \times n$ matrices whose all entries are $ 0$ or $ 1$. Find the number of such matrices for which the number of $ 1$-s in each row and in each column is even.

2004 IberoAmerican, 1

Determine all pairs $ (a,b)$ of positive integers, each integer having two decimal digits, such that $ 100a\plus{}b$ and $ 201a\plus{}b$ are both perfect squares.

1976 AMC 12/AHSME, 15

If $r$ is the remainder when each of the numbers $1059,~1417,$ and $2312$ is divided by $d$, where $d$ is an integer greater than $1$, then $d-r$ equals $\textbf{(A) }1\qquad\textbf{(B) }15\qquad\textbf{(C) }179\qquad\textbf{(D) }d-15\qquad \textbf{(E) }d-1$

2012 Junior Balkan MO, 4

Find all positive integers $x,y,z$ and $t$ such that $2^x3^y+5^z=7^t$.

2015 AMC 10, 1

What is the value of $2-(-2)^{-2}$? $ \textbf{(A) } -2 \qquad\textbf{(B) } \dfrac{1}{16} \qquad\textbf{(C) } \dfrac{7}{4} \qquad\textbf{(D) } \dfrac{9}{4} \qquad\textbf{(E) } 6 $

2011 Croatia Team Selection Test, 1

We define a sequence $a_n$ so that $a_0=1$ and \[a_{n+1} = \begin{cases} \displaystyle \frac{a_n}2 & \textrm { if } a_n \equiv 0 \pmod 2, \\ a_n + d & \textrm{ otherwise. } \end{cases} \] for all postive integers $n$. Find all positive integers $d$ such that there is some positive integer $i$ for which $a_i=1$.