Found problems: 2008
1988 China Team Selection Test, 4
Let $k \in \mathbb{N},$ $S_k = \{(a, b) | a, b = 1, 2, \ldots, k \}.$ Any two elements $(a, b)$, $(c, d)$ $\in S_k$ are called "undistinguishing" in $S_k$ if $a - c \equiv 0$ or $\pm 1 \pmod{k}$ and $b - d \equiv 0$ or $\pm 1 \pmod{k}$; otherwise, we call them "distinguishing". For example, $(1, 1)$ and $(2, 5)$ are undistinguishing in $S_5$. Considering the subset $A$ of $S_k$ such that the elements of $A$ are pairwise distinguishing. Let $r_k$ be the maximum possible number of elements of $A$.
(i) Find $r_5$.
(ii) Find $r_7$.
(iii) Find $r_k$ for $k \in \mathbb{N}$.
2013 Federal Competition For Advanced Students, Part 1, 1
Show that if for non-negative integers $m$, $n$, $N$, $k$ the equation \[(n^2+1)^{2^k}\cdot(44n^3+11n^2+10n+2)=N^m\] holds, then $m = 1$.
2023 AMC 10, 10
You are playing a game. A $2 \times 1$ rectangle covers two adjacent squares (oriented either horizontally or vertically) of a $3 \times 3$ grid of squares, but you are not told which two squares are covered. Your goal is to find at least one square that is covered by the rectangle. A "turn" consists of you guessing a square, after which you are told whether that square is covered by the hidden rectangle. What is the minimum number of turns you need to ensue that at least one of your guessed squares is covered by the rectangle?
$\textbf{(A)}~3\qquad\textbf{(B)}~5\qquad\textbf{(C)}~4\qquad\textbf{(D)}~8\qquad\textbf{(E)}~6$
2003 AMC 8, 19
How many integers between $1000$ and $2000$ have all three of the numbers $15$, $20$, and $25$ as factors?
$\textbf{(A)}\ 1 \qquad
\textbf{(B)}\ 2 \qquad
\textbf{(C)}\ 3 \qquad
\textbf{(D)}\ 4 \qquad
\textbf{(E)}\ 5$
2001 District Olympiad, 1
A positive integer is called [i]good[/i] if it can be written as a sum of two consecutive positive integers and as a sum of three consecutive positive integers. Prove that:
a)2001 is [i]good[/i], but 3001 isn't [i]good[/i].
b)the product of two [i]good[/i] numbers is a [i]good[/i] number.
c)if the product of two numbers is [i]good[/i], then at least one of the numbers is [i]good[/i].
[i]Bogdan Enescu[/i]
1974 IMO, 3
Prove that for any n natural, the number \[ \sum \limits_{k=0}^{n} \binom{2n+1}{2k+1} 2^{3k} \]
cannot be divided by $5$.
2008 Romania Team Selection Test, 3
Let $ m,\ n \geq 3$ be positive odd integers. Prove that $ 2^{m}\minus{}1$ doesn't divide $ 3^{n}\minus{}1$.
1987 IMO Longlists, 78
Prove that for every natural number $k$ ($k \geq 2$) there exists an irrational number $r$ such that for every natural number $m$,
\[[r^m] \equiv -1 \pmod k .\]
[i]Remark.[/i] An easier variant: Find $r$ as a root of a polynomial of second degree with integer coefficients.
[i]Proposed by Yugoslavia.[/i]
1969 IMO Shortlist, 7
$(BUL 1)$ Prove that the equation $\sqrt{x^3 + y^3 + z^3}=1969$ has no integral solutions.
2007 Princeton University Math Competition, 9
How many pairs of integers $a$ and $b$ are there such that $a$ and $b$ are between $1$ and $42$ and $a^9 = b^7 \mod 43$?
1973 IMO Longlists, 9
Prove that $2^{147} - 1$ is divisible by $343$.
2018 VTRMC, 2
Let $A, B \in M_6 (\mathbb{Z} )$ such that $A \equiv I \equiv B \text{ mod }3$ and $A^3 B^3 A^3 = B^3$. Prove that $A = I$. Here $M_6 (\mathbb{Z} )$ indicates the $6$ by $6$ matrices with integer entries, $I$ is the identity matrix, and $X \equiv Y \text{ mod }3$ means all entries of $X-Y$ are divisible by $3$.
2006 China Team Selection Test, 3
Let $a_{i}$ and $b_{i}$ ($i=1,2, \cdots, n$) be rational numbers such that for any real number $x$ there is:
\[x^{2}+x+4=\sum_{i=1}^{n}(a_{i}x+b)^{2}\]
Find the least possible value of $n$.
PEN M Problems, 27
Let $ p \ge 3$ be a prime number. The sequence $ \{a_{n}\}_{n \ge 0}$ is defined by $ a_{n}=n$ for all $ 0 \le n \le p-1$, and $ a_{n}=a_{n-1}+a_{n-p}$ for all $ n \ge p$. Compute $ a_{p^{3}}\; \pmod{p}$.
2004 Romania Team Selection Test, 13
Let $m\geq 2$ be an integer. A positive integer $n$ has the property that for any positive integer $a$ coprime with $n$, we have $a^m - 1\equiv 0 \pmod n$.
Prove that $n \leq 4m(2^m-1)$.
Created by Harazi, modified by Marian Andronache.
2012 ELMO Shortlist, 5
Let $n>2$ be a positive integer and let $p$ be a prime. Suppose that the nonzero integers are colored in $n$ colors. Let $a_1,a_2,\ldots,a_{n}$ be integers such that for all $1\le i\le n$, $p^i\nmid a_i$ and $p^{i-1}\mid a_i$. In terms of $n$, $p$, and $\{a_i\}_{i=1}^{n}$, determine if there must exist integers $x_1,x_2,\ldots,x_{n}$ of the same color such that $a_1x_1+a_2x_2+\cdots+a_{n}x_{n}=0$.
[i]Ravi Jagadeesan.[/i]
2008 Korean National Olympiad, 5
Let $p$ be a prime where $p \ge 5$.
Prove that $\exists n$ such that $1+ (\sum_{i=2}^n \frac{1}{i^2})(\prod_{i=2}^n i^2) \equiv 0 \pmod p$
1997 Putnam, 5
Let us define a sequence $\{a_n\}_{n\ge 1}$. Define as follows:
\[ a_1=2\text{ and }a_{n+1}=2^{a_n}\text{ for }n\ge 1 \]
Show this :
\[ a_{n}\equiv a_{n-1}\pmod n \]
2006 Germany Team Selection Test, 3
Is the following statement true?
For each positive integer $n$, we can find eight nonnegative integers $a$, $b$, $c$, $d$, $e$, $f$, $g$, $h$ such that $n=\frac{2^a-2^b}{2^c-2^d}\cdot\frac{2^e-2^f}{2^g-2^h}$.
2010 Romanian Master of Mathematics, 1
For a finite non empty set of primes $P$, let $m(P)$ denote the largest possible number of consecutive positive integers, each of which is divisible by at least one member of $P$.
(i) Show that $|P|\le m(P)$, with equality if and only if $\min(P)>|P|$.
(ii) Show that $m(P)<(|P|+1)(2^{|P|}-1)$.
(The number $|P|$ is the size of set $P$)
[i]Dan Schwarz, Romania[/i]
2009 Macedonia National Olympiad, 1
Find all natural numbers $x,y,z$ such that $a+2^x3^y=z^2$.
1979 Romania Team Selection Tests, 6.
Find all positive integer solutions $ x, y, z$ of the equation $ 3^x \plus{} 4^y \equal{} 5^z.$
2014 NIMO Problems, 8
Let $p=2^{16}+1$ be a prime. A sequence of $2^{16}$ positive integers $\{a_n\}$ is [i]monotonically bounded[/i] if $1\leq a_i\leq i$ for all $1\leq i\leq 2^{16}$. We say that a term $a_k$ in the sequence with $2\leq k\leq 2^{16}-1$ is a [i]mountain[/i] if $a_k$ is greater than both $a_{k-1}$ and $a_{k+1}$. Evan writes out all possible monotonically bounded sequences. Let $N$ be the total number of mountain terms over all such sequences he writes. Find the remainder when $N$ is divided by $p$.
[i]Proposed by Michael Ren[/i]
2002 Putnam, 6
Let $p$ be a prime number. Prove that the determinant of the matrix \[ \begin{bmatrix}x & y & z\\ x^p & y^p & z^p \\ x^{p^2} & y^{p^2} & z^{p^2} \end{bmatrix} \] is congruent modulo $p$ to a product of polynomials of the form $ax+by+cz$, where $a$, $b$, and $c$ are integers. (We say two integer polynomials are congruent modulo $p$ if corresponding coefficients are congruent modulo $p$.)
1989 Canada National Olympiad, 3
Define $ \{ a_n \}_{n\equal{}1}$ as follows: $ a_1 \equal{} 1989^{1989}; \ a_n, n > 1,$ is the sum of the digits of $ a_{n\minus{}1}$. What is the value of $ a_5$?