This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2015 Oral Moscow Geometry Olympiad, 5

A triangle $ABC$ and spheres are given in space $S_1$ and $S_2$, each of which passes through points $A, B$ and $C$. For points $M$ spheres $S_1$ not lying in the plane of triangle $ABC$ are drawn lines $MA, MB$ and $MC$, intersecting the sphere $S_2$ for the second time at points $A_1,B_1$ and $C_1$, respectively. Prove that the planes passing through points $A_1, B_1$ and $C_1$, touch a fixed sphere or pass through a fixed point.

1952 Moscow Mathematical Olympiad, 214

Prove that if $|x| < 1$ and $|y| < 1$, then $\left|\frac{x - y}{1 -xy}\right|< 1$.