This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 112

2018 Romania Team Selection Tests, 1

Find the least number $ c$ satisfyng the condition $\sum_{i=1}^n {x_i}^2\leq cn$ and all real numbers $x_1,x_2,...,x_n$ are greater than or equal to $-1$ such that $\sum_{i=1}^n {x_i}^3=0$

2010 Contests, 3

Let $x_1, \ldots , x_{100}$ be nonnegative real numbers such that $x_i + x_{i+1} + x_{i+2} \leq 1$ for all $i = 1, \ldots , 100$ (we put $x_{101 } = x_1, x_{102} = x_2).$ Find the maximal possible value of the sum $S = \sum^{100}_{i=1} x_i x_{i+2}.$ [i]Proposed by Sergei Berlov, Ilya Bogdanov, Russia[/i]

2014 Contests, 1

Let $a_1,\ldots,a_n$ and $b_1\ldots,b_n$ be $2n$ real numbers. Prove that there exists an integer $k$ with $1\le k\le n$ such that $ \sum_{i=1}^n|a_i-a_k| ~~\le~~ \sum_{i=1}^n|b_i-a_k|.$ (Proposed by Gerhard Woeginger, Austria)

1987 IMO, 3

Let $x_1,x_2,\ldots,x_n$ be real numbers satisfying $x_1^2+x_2^2+\ldots+x_n^2=1$. Prove that for every integer $k\ge2$ there are integers $a_1,a_2,\ldots,a_n$, not all zero, such that $|a_i|\le k-1$ for all $i$, and $|a_1x_1+a_2x_2+\ldots+a_nx_n|\le{(k-1)\sqrt n\over k^n-1}$.

2009 Stars Of Mathematics, 1

Let $x_1, x_2, ... , x_n$ and $y_1, y_2, ..., y_n$ be positive real numbers so that $$x_1 + x_2 + ...+ x_n \ge x_1y_1 + x_2y_2 + ... + x_ny_n.$$ Show that for any non-negative integer $p$ the following inequality holds $$\frac{x_1}{y_1^p} +\frac{ x_2}{y_2^p} + ...+ \frac{x_n}{y_n^p} \ge x_1 + x_2 + ...+ x_n.$$

2021 Taiwan TST Round 3, A

Let $n$ and $k$ be positive integers. Prove that for $a_1, \dots, a_n \in [1,2^k]$ one has \[ \sum_{i = 1}^n \frac{a_i}{\sqrt{a_1^2 + \dots + a_i^2}} \le 4 \sqrt{kn}. \]

2016 EGMO, 1

Let $n$ be an odd positive integer, and let $x_1,x_2,\cdots ,x_n$ be non-negative real numbers. Show that \[ \min_{i=1,\ldots,n} (x_i^2+x_{i+1}^2) \leq \max_{j=1,\ldots,n} (2x_jx_{j+1}) \]where $x_{n+1}=x_1$.

1998 USAMO, 3

Let $a_0,a_1,\cdots ,a_n$ be numbers from the interval $(0,\pi/2)$ such that \[ \tan (a_0-\frac{\pi}{4})+ \tan (a_1-\frac{\pi}{4})+\cdots +\tan (a_n-\frac{\pi}{4})\geq n-1. \] Prove that \[ \tan a_0\tan a_1 \cdots \tan a_n\geq n^{n+1}. \]

2021 IMO Shortlist, A4

Show that the inequality \[\sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i-x_j|}\leqslant \sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i+x_j|}\]holds for all real numbers $x_1,\ldots x_n.$

1970 IMO Shortlist, 9

Let $u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_n$ be real numbers. Prove that \[1+ \sum_{i=1}^n (u_i+v_i)^2 \leq \frac 43 \Biggr( 1+ \sum_{i=1}^n u_i^2 \Biggl) \Biggr( 1+ \sum_{i=1}^n v_i^2 \Biggl) .\]

2014 Mediterranean Mathematics Olympiad, 1

Let $a_1,\ldots,a_n$ and $b_1\ldots,b_n$ be $2n$ real numbers. Prove that there exists an integer $k$ with $1\le k\le n$ such that $ \sum_{i=1}^n|a_i-a_k| ~~\le~~ \sum_{i=1}^n|b_i-a_k|.$ (Proposed by Gerhard Woeginger, Austria)

2015 IMO Shortlist, A3

Let $n$ be a fixed positive integer. Find the maximum possible value of \[ \sum_{1 \le r < s \le 2n} (s-r-n)x_rx_s, \] where $-1 \le x_i \le 1$ for all $i = 1, \cdots , 2n$.

1966 IMO Longlists, 13

Let $a_1, a_2, \ldots, a_n$ be positive real numbers. Prove the inequality \[\binom n2 \sum_{i<j} \frac{1}{a_ia_j} \geq 4 \left( \sum_{i<j} \frac{1}{a_i+a_j} \right)^2\]

2016 Iran Team Selection Test, 4

Let $n$ be a fixed positive integer. Find the maximum possible value of \[ \sum_{1 \le r < s \le 2n} (s-r-n)x_rx_s, \] where $-1 \le x_i \le 1$ for all $i = 1, \cdots , 2n$.

2020 Macedonia Additional BMO TST, 1

Let $a_1,a_2,...,a_{2020}$ be positive real numbers. Prove that: $$\max{(a^2_1-a_2,a^2_2-a_3,...,a^2_{2020}-a_1)}\ge\max{(a^2_1-a_1,a^2_2-a_2,...,a^2_{2020}-a_{2020})}$$

2014 Iran Team Selection Test, 5

$n$ is a natural number. for every positive real numbers $x_{1},x_{2},...,x_{n+1}$ such that $x_{1}x_{2}...x_{n+1}=1$ prove that: $\sqrt[x_{1}]{n}+...+\sqrt[x_{n+1}]{n} \geq n^{\sqrt[n]{x_{1}}}+...+n^{\sqrt[n]{x_{n+1}}}$

2001 Kazakhstan National Olympiad, 3

For positive numbers $ x_1, x_2, \ldots, x_n $ $ (n \geq 1) $ the following equality holds $$ \frac {1} {{1 + x_1}} + \frac {1} {{1 + x_2}} + \ldots + \frac {1} {{1 + x_n}} = 1. $$ Prove that $ x_1 \cdot x_2 \cdot \ldots \cdot x_n \geq (n-1) ^ n. $

1989 APMO, 1

Let $x_1$, $x_2$, $\cdots$, $x_n$ be positive real numbers, and let \[ S = x_1 + x_2 + \cdots + x_n. \] Prove that \[ (1 + x_1)(1 + x_2) \cdots (1 + x_n) \leq 1 + S + \frac{S^2}{2!} + \frac{S^3}{3!} + \cdots + \frac{S^n}{n!} \]

2004 IMO, 4

Let $n \geq 3$ be an integer. Let $t_1$, $t_2$, ..., $t_n$ be positive real numbers such that \[n^2 + 1 > \left( t_1 + t_2 + \cdots + t_n \right) \left( \frac{1}{t_1} + \frac{1}{t_2} + \cdots + \frac{1}{t_n} \right).\] Show that $t_i$, $t_j$, $t_k$ are side lengths of a triangle for all $i$, $j$, $k$ with $1 \leq i < j < k \leq n$.

2005 Germany Team Selection Test, 2

Let $ n$ be a positive integer such that $ n\geq 3$. Let $ a_1$, $ a_2$, ..., $ a_n$ and $ b_1$, $ b_2$, ..., $ b_n$ be $ 2n$ positive real numbers satisfying the equations \[ a_1 \plus{} a_2 \plus{} ... \plus{} a_n \equal{} 1, \quad \text{and} \quad b_1^2 \plus{} b_2^2 \plus{} ... \plus{} b_n^2 \equal{} 1.\] Prove the inequality \[a_1\left(b_1 \plus{} a_2\right) \plus{} a_2\left(b_2 \plus{} a_3\right) \plus{} ... \plus{} a_{n \minus{} 1}\left(b_{n \minus{} 1} \plus{} a_n\right) \plus{} a_n\left(b_n \plus{} a_1\right) < 1.\]

1985 IMO Longlists, 16

Let $x_1, x_2, \cdots , x_n$ be positive numbers. Prove that \[\frac{x_1^2}{x_1^2+x_2x_3} + \frac{x_2^2}{x_2^2+x_3x_4} + \cdots +\frac{x_{n-1}^2}{x_{n-1}^2+x_nx_1} +\frac{x_n^2}{x_n^2+x_1x_2} \leq n-1\]

2020 Centroamerican and Caribbean Math Olympiad, 5

Let $P(x)$ be a polynomial with real non-negative coefficients. Let $k$ be a positive integer and $x_1, x_2, \dots, x_k$ positive real numbers such that $x_1x_2\cdots x_k=1$. Prove that $$P(x_1)+P(x_2)+\cdots+P(x_k)\geq kP(1).$$

1994 Balkan MO, 3

Let $a_1,a_2,\ldots,a_n$ be a permutation of the numbers $1,2,\ldots,n$, with $n\geq 2$. Determine the largest possible value of the sum \[ S(n)=|a_2-a_1|+ |a_3-a_2| + \cdots + |a_n-a_{n-1}| . \] [i]Romania[/i]

2005 Germany Team Selection Test, 2

Let $ n$ be a positive integer such that $ n\geq 3$. Let $ a_1$, $ a_2$, ..., $ a_n$ and $ b_1$, $ b_2$, ..., $ b_n$ be $ 2n$ positive real numbers satisfying the equations \[ a_1 \plus{} a_2 \plus{} ... \plus{} a_n \equal{} 1, \quad \text{and} \quad b_1^2 \plus{} b_2^2 \plus{} ... \plus{} b_n^2 \equal{} 1.\] Prove the inequality \[a_1\left(b_1 \plus{} a_2\right) \plus{} a_2\left(b_2 \plus{} a_3\right) \plus{} ... \plus{} a_{n \minus{} 1}\left(b_{n \minus{} 1} \plus{} a_n\right) \plus{} a_n\left(b_n \plus{} a_1\right) < 1.\]

2012 IMO, 2

Let $n\ge 3$ be an integer, and let $a_2,a_3,\ldots ,a_n$ be positive real numbers such that $a_{2}a_{3}\cdots a_{n}=1$. Prove that \[(1 + a_2)^2 (1 + a_3)^3 \dotsm (1 + a_n)^n > n^n.\] [i]Proposed by Angelo Di Pasquale, Australia[/i]