This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2023 Sharygin Geometry Olympiad, 17

A common external tangent to circles $\omega_1$ and $\omega_2$ touches them at points $T_1, T_2$ respectively. Let $A$ be an arbitrary point on the extension of $T_1T_2$ beyond $T_1$, and $B$ be a point on the extension of $T_1T_2$ beyond $T_2$ such that $AT_1 = BT_2$. The tangents from $A$ to $\omega_1$ and from $B$ to $\omega_2$ distinct from $T_1T_2$ meet at point $C$. Prove that all nagelians of triangles $ABC$ from $C$ have a common point.