This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2024 Thailand TST, 2

Tags: nithi , mmp , incenter , geometry
Let $ABC$ be triangle with incenter $I$ . Let $AI$ intersect $BC$ at $D$. Point $P,Q$ lies inside triangle $ABC$ such that $\angle BPA + \angle CQA = 180^\circ$ and $B,Q,I,P,C$ concyclic in order . $BP$ intersect $CQ$ at $X$. Prove that the intersection of $(ABC)$ and $(APQ)$ lies on line $XD$.