Found problems: 15460
2001 Croatia National Olympiad, Problem 3
Let $p_1,p_2,p_3,p_4$ be four distinct primes, and let $1=d_1<d_2<\ldots<d_{16}=n$ be the divisors of $n=p_1p_2p_3p_4$. Determine all $n<2001$ with the property that
$d_9-d_8=22$.
2003 IMO Shortlist, 5
An integer $n$ is said to be [i]good[/i] if $|n|$ is not the square of an integer. Determine all integers $m$ with the following property: $m$ can be represented, in infinitely many ways, as a sum of three distinct good integers whose product is the square of an odd integer.
[i]Proposed by Hojoo Lee, Korea[/i]
2012 German National Olympiad, 1
Define a sequence $(a_n)$ by $a_0 =-4 , a_1 =-7$ and $a_{n+2}= 5a_{n+1} -6a_n$ for $n\geq 0.$ Prove that there are infinitely many positive integers $n$ such that $a_n$ is composite.
2016 Azerbaijan Junior Mathematical Olympiad, 1
In decimal representation $$\text {34!=295232799039a041408476186096435b0000000}.$$ Find the numbers $a$ and $b$.
2006 Mexico National Olympiad, 6
Let n be the sum of the digits in a natural number A. The number A it's said to be "surtido" if every number 1,2,3,4....,n can be expressed as a sum of digits in A.
a)Prove that, if 1,2,3,4,5,6,7,8 are sums of digits in A, then A is "Surtido"
b)If 1,2,3,4,5,6,7 are sums of digits in A, does it follow that A is "Surtido"?
2002 Mexico National Olympiad, 1
The numbers $1$ to $1024$ are written one per square on a $32 \times 32$ board, so that the first row is $1, 2, ... , 32$, the second row is $33, 34, ... , 64$ and so on. Then the board is divided into four $16 \times 16$ boards and the position of these boards is moved round clockwise, so that
$AB$ goes to $DA$
$DC \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \, CB$
then each of the $16 \times 16 $ boards is divided into four equal $8 \times 8$ parts and each of these is moved around in the same way (within the $ 16 \times 16$ board). Then each of the $8 \times 8$ boards is divided into four $4 \times 4$ parts and these are moved around, then each $4 \times 4$ board is divided into $2 \times 2$ parts which are moved around, and finally the squares of each $2 \times 2$ part are moved around. What numbers end up on the main diagonal (from the top left to bottom right)?
1999 AIME Problems, 9
A function $f$ is defined on the complex numbers by $f(z)=(a+bi)z,$ where $a$ and $b$ are positive numbers. This function has the property that the image of each point in the complex plane is equidistant from that point and the origin. Given that $|a+bi|=8$ and that $b^2=m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$
2025 Bangladesh Mathematical Olympiad, P8
Let $a, b, m, n$ be positive integers such that $gcd(a, b) = 1$ and $a > 1$. Prove that if $$a^m+b^m \mid a^n+b^n$$then $m \mid n$.
2020 Final Mathematical Cup, 4
Find all positive integers $n$ such that for all positive integers $m$, $1<m<n$, relatively prime to $n$, $m$ must be a prime number.
2023 Purple Comet Problems, 6
Find the least positive integer such that the product of its digits is $8! = 8 \cdot 7 \cdot6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$.
2010 QEDMO 7th, 5
For a natural number $n$, let $D (n)$ be the set of (positive integers) divisors of $n$. Furthermore let $d (n)$ be the number of divisors of $n,$ that is, the cardinality of $D (n)$. For each such $n$, prove the equality $$\sum_{k\in D(n)} d(k)^3=\left( \sum_{k\in D(n)} d(k)\right) ^2.$$
2013 Brazil Team Selection Test, 3
Let $x$ and $y$ be positive integers. If ${x^{2^n}}-1$ is divisible by $2^ny+1$ for every positive integer $n$, prove that $x=1$.
1994 Romania TST for IMO, 3:
Determine all integer solutions of the equation $x^n+y^n=1994$ where $n\geq 2$
2010 District Olympiad, 4
Find all non negative integers $(a, b)$ such that
$$a + 2b - b^2 =\sqrt{2a + a^2 + |2a + 1 - 2b|}.$$
MathLinks Contest 3rd, 3
An integer $z$ is said to be a [i]friendly [/i] integer if $|z|$ is not the square of an integer. Determine all integers $n$ such that there exists an infinite number of triplets of distinct friendly integers $(a, b, c)$ such that $n = a+b+c$ and $abc$ is the square of an odd integer.
2021 Ukraine National Mathematical Olympiad, 1
It is known that for some integers $a_{2021},a_{2020},...,a_1,a_0$ the expression
$$a_{2021}n^{2021}+a_{2020}n^{2020}+...+a_1n+a_0$$
is divisible by $2021$ for any arbitrary integer $n$. Is it required that each of the numbers $a_{2021},a_{2020},...,a_1,a_0$ also divisible by $2021$?
2015 JBMO Shortlist, NT1
What is the greatest number of integers that can be selected from a set of $2015$ consecutive numbers so that no sum of any two selected numbers is divisible by their difference?
2008 Germany Team Selection Test, 3
Let $ X$ be a set of 10,000 integers, none of them is divisible by 47. Prove that there exists a 2007-element subset $ Y$ of $ X$ such that $ a \minus{} b \plus{} c \minus{} d \plus{} e$ is not divisible by 47 for any $ a,b,c,d,e \in Y.$
[i]Author: Gerhard Wöginger, Netherlands[/i]
2007 ITest, 25
Ted's favorite number is equal to \[1\cdot\binom{2007}1+2\cdot\binom{2007}2+3\cdot\binom{2007}3+\cdots+2007\cdot\binom{2007}{2007}.\] Find the remainder when Ted's favorite number is divided by $25$.
$\begin{array}{@{\hspace{-1em}}l@{\hspace{14em}}l@{\hspace{14em}}l}
\textbf{(A) }0&\textbf{(B) }1&\textbf{(C) }2\\\\
\textbf{(D) }3&\textbf{(E) }4&\textbf{(F) }5\\\\
\textbf{(G) }6&\textbf{(H) }7&\textbf{(I) }8\\\\
\textbf{(J) }9&\textbf{(K) }10&\textbf{(L) }11\\\\
\textbf{(M) }12&\textbf{(N) }13&\textbf{(O) }14\\\\
\textbf{(P) }15&\textbf{(Q) }16&\textbf{(R) }17\\\\
\textbf{(S) }18&\textbf{(T) }19&\textbf{(U) }20\\\\
\textbf{(V) }21&\textbf{(W) }22 & \textbf{(X) }23\\\\
\textbf{(Y) }24 \end{array}$
2010 Kosovo National Mathematical Olympiad, 4
Let $(p_1,p_2,..., p_n)$ be a random permutation of the set $\{1,2,...,n)$. If $n$ is odd, prove that the product
$(p_1-1)\cdot (p_2-2)\cdot ...\cdot (p_n-n)$
is an even number.
@below fixed.
1999 Brazil Team Selection Test, Problem 1
For a positive integer n, let $w(n)$ denote the number of distinct prime
divisors of n. Determine the least positive integer k such that
$2^{w(n)} \leq k \sqrt[4]{n}$
for all positive integers n.
2022 LMT Spring, 10
In a room, there are $100$ light switches, labeled with the positive integers ${1,2, . . . ,100}$. They’re all initially turned off. On the $i$ th day for $1 \le i \le 100$, Bob flips every light switch with label number $k$ divisible by $i$ a total of $\frac{k}{i}$ times. Find the sum of the labels of the light switches that are turned on at the end of the $100$th day.
2019 Harvard-MIT Mathematics Tournament, 8
There is a unique function $f: \mathbb{N} \to \mathbb{R}$ such that $f(1) > 0$ and such that
\[\sum_{d \mid n} f(d) f\left(\frac{n}{d}\right) = 1\]
for all $n \ge 1$. What is $f(2018^{2019})$?
2017 Dutch Mathematical Olympiad, 4
If we divide the number $13$ by the three numbers $5, 7$, and $9$, then these divisions leave remainders: when dividing by $5$ the remainder is $3$, when dividing by $7$ the remainder is $6$, and when dividing by $9$ the remainder is 4. If we add these remainders, we obtain $3 + 6 + 4 = 13$, the original number.
(a) Let $n$ be a positive integer and let $a$ and $b$ be two positive integers smaller than $n$. Prove: if you divide $n$ by $a$ and $b$, then the sum of the two remainders never equals $n$.
(b) Determine all integers $n > 229$ having the property that if you divide $n$ by $99, 132$, and $229$, the sum of the three remainders is $n$.
2024 USEMO, 2
Let $k$ be a fixed positive integer. For each integer $1 \leq i \leq 4$, let $x_i$ and $y_i$ be positive integers such that their least common multiple is $k$. Suppose that the four points $(x_1, y_1)$, $(x_2, y_2)$, $(x_3, y_3)$, $(x_4, y_4)$ are the vertices of a non-degenerate rectangle in the Cartesian plane. Prove that $x_1x_2x_3x_4$ is a perfect square.
[i]Andrei Chirita[/i]