Found problems: 15460
1955 Polish MO Finals, 2
Prove that among the seven natural numbers forming an arithmetic progression with difference $ 30 $ , one and only one is divisible by $ 7 $ .
2010 CHMMC Winter, Mixer
[b]p1.[/b] Compute $x$ such that $2009^{2010} \equiv x$ (mod $2011$) and $0 \le x < 2011$.
[b]p2.[/b] Compute the number of "words" that can be formed by rearranging the letters of the word "syzygy" so that the y's are evenly spaced. (The $y$'s are evenly spaced if the number of letters (possibly zero) between the first $y$ and the second $y$ is the same as the number of letters between the second $y$ and the third $y$.)
[b]p3.[/b] Let $A$ and $B$ be subsets of the integers, and let $A + B$ be the set containing all sums of the form $a + b$, where $a$ is an element of $A$, and $b$ is an element of $B$. For example, if $A = \{0, 4, 5\}$ and $B =\{-3,-1, 2, 6\}$, then $A + B = \{-3,-1, 1, 2, 3, 4, 6, 7, 10, 11\}$. If $A$ has $1955$ elements and $B$ has $1891$ elements, compute the smallest possible number of elements in $A + B$.
[b]p4.[/b] Compute the sum of all integers of the form $p^n$ where $p$ is a prime, $n \ge 3$, and $p^n \le 1000$.
[b]p5.[/b] In a season of interhouse athletics at Caltech, each of the eight houses plays each other house in a particular sport. Suppose one of the houses has a $1/3$ chance of beating each other house. If the results of the games are independent, compute the probability that they win at least three games in a row.
[b]p6.[/b] A positive integer $n$ is special if there are exactly $2010$ positive integers smaller than $n$ and relatively prime to $n$. Compute the sum of all special numbers.
[b]p7.[/b] Eight friends are playing informal games of ultimate frisbee. For each game, they split themselves up into two teams of four. They want to arrange the teams so that, at the end of the day, each pair of players has played at least one game on the same team. Determine the smallest number of games they need to play in order to achieve this.
[b]p8.[/b] Compute the number of ways to choose five nonnegative integers $a, b, c, d$, and $e$, such that $a + b + c + d + e = 20$.
[b]p9.[/b] Is $23$ a square mod $41$? Is $15$ a square mod $41$?
[b]p10.[/b] Let $\phi (n)$ be the number of positive integers less than or equal to $n$ that are relatively prime to $n$. Compute $ \sum_{d|15015} \phi (d)$.
[b]p11.[/b] Compute the largest possible volume of an regular tetrahedron contained in a cube with volume $1$.
[b]p12.[/b] Compute the number of ways to cover a $4 \times 4$ grid with dominoes.
[b]p13.[/b] A collection of points is called mutually equidistant if the distance between any two of them is the same. For example, three mutually equidistant points form an equilateral triangle in the plane, and four mutually equidistant points form a regular tetrahedron in three-dimensional space. Let $A$, $B$, $C$, $D$, and $E$ be five mutually equidistant points in four-dimensional space. Let $P$ be a point such that $AP = BP = CP = DP = EP = 1$. Compute the side length $AB$.
[b]p14. [/b]Ten turtles live in a pond shaped like a $10$-gon. Because it's a sunny day, all the turtles are sitting in the sun, one at each vertex of the pond. David decides he wants to scare all the turtles back into the pond. When he startles a turtle, it dives into the pond. Moreover, any turtles on the two neighbouring vertices also dive into the pond. However, if the vertex opposite the startled turtle is empty, then a turtle crawls out of the pond and sits at that vertex. Compute the minimum number of times David needs to startle a turtle so that, by the end, all but one of the turtles are in the pond.
[b]p15.[/b] The game hexapawn is played on a $3 \times 3$ chessboard. Each player starts with three pawns on the row nearest him or her. The players take turns moving their pawns. Like in chess, on a player's turn he or she can either
$\bullet$ move a pawn forward one space if that square is empty, or
$\bullet$ capture an opponent's pawn by moving his or her own pawn diagonally forward one space into the opponent's pawn's square.
A player wins when either
$\bullet$ he or she moves a pawn into the last row, or
$\bullet$ his or her opponent has no legal moves.
Eve and Fred are going to play hexapawn. However, they're not very good at it. Each turn, they will pick a legal move at random with equal probability, with one exception: If some move will immediately win the game (by either of the two winning conditions), then he or she will make that move, even if other moves are available. If Eve moves first, compute the probability that she will win.
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2005 Indonesia Juniors, day 1
p1. $A$ is a set of numbers. The set $A$ is closed to subtraction, meaning that the result of subtracting two numbers in $A$ will be
returns a number in $A$ as well. If it is known that two members of $A$ are $4$ and $9$, show that:
a. $0\in A$
b. $13 \in A$
c. $74 \in A$
d. Next, list all the members of the set $A$ .
p2. $(2, 0, 4, 1)$ is one of the solutions/answers of $x_1+x_2+x_3+x_4=7$. If all solutions belong on the set of not negative integers , specify as many possible solutions/answers from $x_1+x_2+x_3+x_4=7$
p3. Adi is an employee at a textile company on duty save data. One time Adi was asked by the company leadership to prepare data on production increases over five periods. After searched by Adi only found four data on the increase, namely $4\%$, $9\%$, $7\%$, and $5\%$. One more data, namely the $5$th data, was not found. Investigate increase of 5th data production, if Adi only remembers that the arithmetic mean and median of the five data are the same.
p4. Find all pairs of integers $(x,y)$ that satisfy the system of the following equations:
$$\left\{\begin{array}{l} x(y+1)=y^2-1 \\
y(x+1)=x^2-1
\end{array} \right. $$
p5. Given the following image. $ABCD$ is square, and $E$ is any point outside the square $ABCD$. Investigate whether the relationship $AE^2 + CE^2 = BE^2 +DE^2$ holds in the picture below.
[img]https://cdn.artofproblemsolving.com/attachments/2/5/a339b0e4df8407f97a4df9d7e1aa47283553c1.png[/img]
2011 Saudi Arabia BMO TST, 2
For any positive integer $n$, let $a_n$ be the number of pairs $(x,y)$ of integers satisfying $|x^2-y^2| = n$.
(a) Find $a_{1432}$ and $a_{1433}$.
(b) Find $a_n$ .
2017 Korea Winter Program Practice Test, 1
Find all prime number $p$ such that the number of positive integer pair $(x,y)$ satisfy the following is not $29$.
[list]
[*]$1\le x,y\le 29$
[*]$29\mid y^2-x^p-26$
[/list]
2006 Germany Team Selection Test, 3
Is the following statement true?
For each positive integer $n$, we can find eight nonnegative integers $a$, $b$, $c$, $d$, $e$, $f$, $g$, $h$ such that $n=\frac{2^a-2^b}{2^c-2^d}\cdot\frac{2^e-2^f}{2^g-2^h}$.
1996 Iran MO (2nd round), 2
Let $a,b,c,d$ be positive integers such that $ab\equal{}cd$. Prove that $a\plus{}b\plus{}c\plus{}d$ is a composite number.
2024 EGMO, 5
Find all functions $f : \mathbb{N} \rightarrow \mathbb{N}$ such that the following conditions are true for every pair of positive integers $(x, y)$:
$(i)$: $x$ and $f(x)$ have the same number of positive divisors.
$(ii)$: If $x \nmid y$ and $y \nmid x$, then:
$$\gcd(f(x), f(y)) > f(\gcd(x, y))$$
2022 Francophone Mathematical Olympiad, 1
find all the integer $n\geq1$ such that $\lfloor\sqrt{n}\rfloor \mid n$
1980 Bundeswettbewerb Mathematik, 1
Six free cells are given in a row. Players $A$ and $B$ alternately write digits from $0$ to $9$ in empty cells, with $A$ starting. When all the cells are filled, one considers the obtained six-digit number $z$. Player $B$ wins if $z$ is divisible by a given natural number $n$, and loses otherwise. For which values of $n$ not exceeding $20$ can $B$ win independently of his opponent’s moves?
2024 China Team Selection Test, 4
Let $n$ be a positive square free integer, $S$ is a subset of $[n]:=\{1,2,\ldots ,n\}$ such that $|S|\ge n/2.$ Prove that there exists three elements $a,b,c\in S$ (can be same), satisfy $ab\equiv c\pmod n.$
[i]Created by Zhenhua Qu[/i]
2024 Euler Olympiad, Round 1, 7
Anna took a number \(N\), which is written in base 10 and has fewer than 9 digits, and duplicated it by writing another \(N\) to its left, creating a new number with twice as many digits. Bob computed the sum of all integers from 1 to \(N\). It turned out that Anna's new number is 7 times as large as the sum computed by Bob. Determine \(N\).
[i]Proposed by Bachana Kutsia, Georgia [/i]
2020 Switzerland - Final Round, 4
Let $\varphi$ denote the Euler phi-function. Prove that for every positive integer $n$
$$2^{n(n+1)} | 32 \cdot \varphi \left( 2^{2^n} - 1 \right).$$
2010 ELMO Shortlist, 4
Let $r$ and $s$ be positive integers. Define $a_0 = 0$, $a_1 = 1$, and $a_n = ra_{n-1} + sa_{n-2}$ for $n \geq 2$. Let $f_n = a_1a_2\cdots a_n$. Prove that $\displaystyle\frac{f_n}{f_kf_{n-k}}$ is an integer for all integers $n$ and $k$ such that $0 < k < n$.
[i]Evan O' Dorney.[/i]
2023 LMT Spring, 10
Positive integers $a$, $b$, and $c$ satisfy $a^2 +b^2 = c^3 -1$ where $c \le 40$. Find the sum of all distinct possible values of $c$.
2011 Kazakhstan National Olympiad, 4
We write in order of increasing number of 1 and all positive integers,which the sum of digits is divisible by $5$. Obtain a sequence of $1, 5, 14, 19. . .$
Prove that the n-th term of the sequence is less than $5n$.
2009 IMAR Test, 1
Given $a$ and $b$ distinct positive integers, show that the system of equations
$x y +zw = a$
$xz + yw = b$
has only finitely many solutions in integers $x, y, z,w$.
EMCC Accuracy Rounds, 2021
[b]p1.[/b] Evaluate $1^2 - 2^2 + 3^2 - 4^2 + ...+ 19^2 - 20^2 + 21^2$.
[b]p2.[/b] Kevin is playing in a table-tennis championship against Vincent. Kevin wins the championship if he wins two matches against Vincent, while Vincent must win three matches to win the championship. Given that both players have a $50\%$ chance of winning each match and there are no ties, the probability that Vincent loses the championship can be written in the form $\frac{a}{b}$ , where $a$ and $b$ are relatively prime positive integers. Find $a + b$.
[b]p3.[/b] For how many positive integers $n$ less than $2000$ is $n^{3n}$ a perfect fourth power?
[b]p4.[/b] Given that a coin of radius $\sqrt{3}$ cm is tossed randomly onto a plane tiled by regular hexagons of side length $14$ cm, the chance that it lands strictly inside of a hexagon can be written in the form $\frac{p}{q}$ , where $p$ and $q$ are relatively prime positive integers. Find $p + q$.
[b]p5.[/b] Given that $A,C,E,I, P,$ and $M$ are distinct nonzero digits such that $$EPIC + EMCC + AMC = PEACE,$$ what is the least possible value of $PEACE$?
[b]p6.[/b] A palindrome is a number that reads the same forwards and backwards. Call a number palindrome-ish if it is not a palindrome but we can make it a palindrome by changing one digit (we cannot change the first digit to zero). For instance, $4009$ is palindrome-ish because we can change the $4$ to a $9$. How many palindrome-ish four-digit numbers are there?
[b]p7.[/b] Given that the heights of triangle $ABC$ have lengths $\frac{15}{7}$ , $5$, and $3$, what is the square of the area of $ABC$?
[b]p8.[/b] Suppose that cubic polynomial $P(x)$ has leading coecient $1$ and three distinct real roots in the interval $[-20, 2]$. Given that the equation $P\left(x + \frac{1}{x} \right) = 0$ has exactly two distinct real solutions, the range of values that $P(3)$ can take is the open interval $(a, b)$. Compute $b - a$.
[b]p9.[/b] Vincent the Bug has $17$ students in his class lined up in a row. Every day, starting on January $1$, $2021$, he performs the same series of swaps between adjacent students. One example of a series of swaps is: swap the $4$th and the $5$th students, then swap the $2$nd and the $3$rd, then the $3$rd and the $4$th. He repeats this series of swaps every day until the students are in the same arrangement as on January $1$. What is the greatest number of days this process could take?
[b]p10.[/b] The summation $$\sum^{18}_{i=1}\frac{1}{i}$$ can be written in the form $\frac{a}{b}$ , where $a$ and $b$ are relatively prime positive integers. Compute the number of divisors of $b$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2008 Rioplatense Mathematical Olympiad, Level 3, 3
Find all integers $k\ge 2$ such that for all integers $n\ge 2$, $n$ does not divide the greatest odd divisor of $k^n+1$.
2011 IMO Shortlist, 2
Consider a polynomial $P(x) = \prod^9_{j=1}(x+d_j),$ where $d_1, d_2, \ldots d_9$ are nine distinct integers. Prove that there exists an integer $N,$ such that for all integers $x \geq N$ the number $P(x)$ is divisible by a prime number greater than 20.
[i]Proposed by Luxembourg[/i]
2013 AMC 12/AHSME, 23
$ ABCD$ is a square of side length $ \sqrt{3} + 1 $. Point $ P $ is on $ \overline{AC} $ such that $ AP = \sqrt{2} $. The square region bounded by $ ABCD $ is rotated $ 90^{\circ} $ counterclockwise with center $ P $, sweeping out a region whose area is $ \frac{1}{c} (a \pi + b) $, where $a $, $b$, and $ c $ are positive integers and $ \text{gcd}(a,b,c) = 1 $. What is $ a + b + c $?
$\textbf{(A)} \ 15 \qquad \textbf{(B)} \ 17 \qquad \textbf{(C)} \ 19 \qquad \textbf{(D)} \ 21 \qquad \textbf{(E)} \ 23 $
1976 Chisinau City MO, 122
The diagonals of some convex quadrilateral are mutually perpendicular and divide the quadrangle into $4$ triangles, the areas of which are expressed by prime numbers. Prove that a circle can be inscribed in this quadrilateral.
1980 Yugoslav Team Selection Test, Problem 3
A sequence $(x_n)$ satisfies $x_{n+1}=\frac{x_n^2+a}{x_{n-1}}$ for all $n\in\mathbb N$. Prove that if $x_0,x_1$, and $\frac{x_0^2+x_1^2+a}{x_0x_1}$ are integers, then all the terms of sequence $(x_n)$ are integers.
1987 IMO Longlists, 8
Determine the least possible value of the natural number $n$ such that $n!$ ends in exactly $1987$ zeros.
[hide="Note"]Note. Here (and generally in MathLinks) natural numbers supposed to be positive.[/hide]
2001 IMC, 2
Let $r,s,t$ positive integers which are relatively prime and $a,b \in G$, $G$ a commutative multiplicative group with unit element $e$, and $a^r=b^s=(ab)^t=e$.
(a) Prove that $a=b=e$.
(b) Does the same hold for a non-commutative group $G$?