Found problems: 15460
2020 June Advanced Contest, 2
Let $p$ be a prime number. At a school of $p^{2020}$ students it is required that each club consist of exactly $p$ students. Is it possible for each pair of students to have exactly one club in common?
2016 Singapore MO Open, 3
Let $n$ be a prime number. Show that there is a permutation $a_1,a_2,...,a_n$ of $1,2,...,n$ so that $a_1,a_1a_2,...,a_1a_2...a_n$ leave distinct remainders when divided by $n$
2011 Belarus Team Selection Test, 2
Find all pairs $(m,n)$ of nonnegative integers for which \[m^2 + 2 \cdot 3^n = m\left(2^{n+1} - 1\right).\]
[i]Proposed by Angelo Di Pasquale, Australia[/i]
2014 China Northern MO, 7
Prove that there exist infinitely many positive integers $n$ such that $3^n+2$ and $5^n+2$ are all composite numbers.
2004 Harvard-MIT Mathematics Tournament, 6
Find the ordered quadruple of digits $(A,B,C,D)$ with $A > B > C > D$, such that
$$\begin{tabular}{ccccc}
& A & B & C & D \\
- & D & C & B & A \\
\hline
= & B & D & A & C \\
\end{tabular}$$
1949 Moscow Mathematical Olympiad, 171
* Prove that a number of the form $2^n$ for a positive integer $n$ may begin with any given combination of digits.
2020 SJMO, 1
Find all positive integers $k \geq 2$ for which there exists some positive integer $n$ such that the last $k$ digits of the decimal representation of $10^{10^n} - 9^{9^n}$ are the same.
[i]Proposed by Andrew Wen[/i]
Kettering MO, 2006
[b]p1.[/b] At a conference a mathematician and a chemist were talking. They were amazed to find that they graduated from the same high school. One of them, the chemist, mentioned that he had three sons and asked the other to calculate the ages of his sons given the following facts:
(a) their ages are integers,
(b) the product of their ages is $36$,
(c) the sum of their ages is equal to the number of windows in the high school of the chemist and the mathematician.
The mathematician considered this problem and noted that there was not enough information to obtain a unique solution. The chemist then noted that his oldest son had red hair. The mathematician then announced that he had determined the ages of the three sons. Please (aspiring mathematicians) determine the ages of the chemists three sons and explain your solution.
[b]p2.[/b] A square is inscribed in a triangle. Two vertices of this square are on the base of the triangle and two others are on the lateral sides. Prove that the length of the side of the square is greater than and less than $2r$, where $r$ is a radius of the circle inscribed in the triangle.
[b]p3.[/b] You are given any set of $100$ integers in which none of the integers is divisible by $100$. Prove that it is possible to select a subset of this set of $100$ integers such that their sum is a multiple of $100$.
[b]p4.[/b] Find all prime numbers $a$ and $b$ such that $a^b + b^a$ is a prime number.
[b]p5.[/b] $N$ airports are connected by airlines. Some airports are directly connected and some are not. It is always possible to travel from one airport to another by changing planes as needed. The board of directors decided to close one of the airports. Prove that it is possible to select an airport to close so that the remaining airports remain connected.
[b]p6.[/b] (A simplified version of the Fermat’s Last Theorem). Prove that there are no positive integers $x, y, z$ and $z \le n$ satisfying the following equation: $x^n + y^n = z^n$.
PS. You should use hide for answers.
2010 Indonesia TST, 4
How many natural numbers $(a,b,n)$ with $ gcd(a,b)=1$ and $ n>1 $ such that the equation \[ x^{an} +y^{bn} = 2^{2010} \] has natural numbers solution $ (x,y) $
1988 ITAMO, 4
Show that all terms of the sequence $1,11,111,1111,...$ in base $9$ are triangular numbers, i.e. of the form $\frac{m(m+1)}{2} $for an integer $m$
2022 Purple Comet Problems, 13
Find the number of positive divisors of $20^{22}$ that are perfect squares or perfect cubes.
2007 QEDMO 4th, 1
Find all primes $p,$ $q,$ $r$ satisfying $p^{2}+2q^{2}=r^{2}.$
2011 Bosnia and Herzegovina Junior BMO TST, 1
Solve equation $\frac{1}{x}-\frac{1}{y}=\frac{1}{5}-\frac{1}{xy}$, where $x$ and $y$ are positive integers.
2020/2021 Tournament of Towns, P3
For which $n{}$ is it possible that a product of $n{}$ consecutive positive integers is equal to a sum of $n{}$ consecutive (not necessarily the same) positive integers?
[i]Boris Frenkin[/i]
Mid-Michigan MO, Grades 5-6, 2012
[b]p1.[/b] A boy has as many sisters as brothers. How ever, his sister has twice as many brothers as sisters. How many boys and girls are there in the family?
[b]p2.[/b] Solve each of the following problems.
(1) Find a pair of numbers with a sum of $11$ and a product of $24$.
(2) Find a pair of numbers with a sum of $40$ and a product of $400$.
(3) Find three consecutive numbers with a sum of $333$.
(4) Find two consecutive numbers with a product of $182$.
[b]p3.[/b] $2008$ integers are written on a piece of paper. It is known that the sum of any $100$ numbers is positive. Show that the sum of all numbers is positive.
[b]p4.[/b] Let $p$ and $q$ be prime numbers greater than $3$. Prove that $p^2 - q^2$ is divisible by $24$.
[b]p5.[/b] Four villages $A,B,C$, and $D$ are connected by trails as shown on the map.
[img]https://cdn.artofproblemsolving.com/attachments/4/9/33ecc416792dacba65930caa61adbae09b8296.png[/img]
On each path $A \to B \to C$ and $B \to C \to D$ there are $10$ hills, on the path $A \to B \to D$ there are $22$ hills, on the path $A \to D \to B$ there are $45$ hills. A group of tourists starts from $A$ and wants to reach $D$. They choose the path with the minimal number of hills. What is the best path for them?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2011 USA Team Selection Test, 3
Let $p$ be a prime. We say that a sequence of integers $\{z_n\}_{n=0}^\infty$ is a [i]$p$-pod[/i] if for each $e \geq 0$, there is an $N \geq 0$ such that whenever $m \geq N$, $p^e$ divides the sum
\[\sum_{k=0}^m (-1)^k {m \choose k} z_k.\]
Prove that if both sequences $\{x_n\}_{n=0}^\infty$ and $\{y_n\}_{n=0}^\infty$ are $p$-pods, then the sequence $\{x_ny_n\}_{n=0}^\infty$ is a $p$-pod.
2018 Thailand TST, 2
For finite sets $A,M$ such that $A \subseteq M \subset \mathbb{Z}^+$, we define $$f_M(A)=\{x\in M \mid x\text{ is divisible by an odd number of elements of }A\}.$$ Given a positive integer $k$, we call $M$ [i]k-colorable[/i] if it is possible to color the subsets of $M$ with $k$ colors so that for any $A \subseteq M$, if $f_M(A)\neq A$ then $f_M(A)$ and $A$ have different colors.
Determine the least positive integer $k$ such that every finite set $M \subset\mathbb{Z}^+$ is k-colorable.
1941 Moscow Mathematical Olympiad, 075
Prove that $1$ plus the product of any four consecutive integers is a perfect square.
2016 Denmark MO - Mohr Contest, 5
Find all possible values of the number
$$\frac{a + b}{c}+\frac{a + c}{b}+\frac{b + c}{a},$$
where $a, b, c$ are positive integers, and $\frac{a + b}{c},\frac{a + c}{b},\frac{b + c}{a}$ are also positive integers.
1985 IMO Longlists, 54
Set $S_n = \sum_{p=1}^n (p^5+p^7)$. Determine the greatest common divisor of $S_n$ and $S_{3n}.$
2009 Korea Junior Math Olympiad, 8
Let a, b, c, d, and e be positive integers. Are there any solutions to $a^2+b^3+c^5+d^7=e^{11}$?
2014 Kosovo National Mathematical Olympiad, 1
Prove that for any integer the number $2n^3+3n^2+7n$ is divisible by $6$.
2010 Balkan MO Shortlist, N2
Solve the following equation in positive integers:
$x^{3} = 2y^{2} + 1 $
2008 Purple Comet Problems, 14
A circular track with diameter $500$ is externally tangent at a point A to a second circular track with diameter $1700.$ Two runners start at point A at the same time and run at the same speed. The first runner runs clockwise along the smaller track while the second runner runs clockwise along the larger track. There is a first time after they begin running when their two positions are collinear with the point A. At that time each runner will have run a distance of $\frac{m\pi}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n. $
IV Soros Olympiad 1997 - 98 (Russia), grade8
[b]p1.[/b] a) There are barrels weighing $1, 2, 3, 4, ..., 19, 20$ pounds. Is it possible to distribute them equally (by weight) into three trucks?
b) The same question for barrels weighing $1, 2, 3, 4, ..., 9, 10$ pounds.
[b]p2.[/b] There are apples and pears in the basket. If you add the same number of apples there as there are now pears (in pieces), then the percentage of apples will be twice as large as what you get if you add as many pears to the basket as there are now apples. What percentage of apples are in the basket now?
[b]p3.[/b] What is the smallest number of integers from $1000$ to $1500$ that must be marked so that any number $x$ from $1000$ to $1500$ differs from one of the marked numbers by no more than $10\% $of the value of $x$?
[b]p4.[/b] Draw a perpendicular from a given point to a given straight line, having a compass and a short ruler (the length of the ruler is significantly less than the distance from the point to the straight line; the compass reaches from the point to the straight line “with a margin”).
[b]p5.[/b] There is a triangle on the chessboard (left figure). It is allowed to roll it around the sides (in this case, the triangle is symmetrically reflected relative to the side around which it is rolled). Can he, after a few steps, take the position shown in right figure?
[img]https://cdn.artofproblemsolving.com/attachments/f/5/eeb96c92f30b837e7ed2cdf7cf77b0fbb8ceda.png[/img]
[b]p6.[/b] The natural number $a$ is less than the natural number $b$. In this case, the sum of the digits of number $a$ is $100$ less than the sum of the digits of number $b$. Prove that between the numbers $ a$ and $b$ there is a number whose sum of digits is $43$ more than the sum of the digits of $a$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c2416727_soros_olympiad_in_mathematics]here.[/url]