This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

1953 Miklós Schweitzer, 5

Show that any positive integer has at least as many positive divisors of the form $3k+1$ as of the form $3k-1$. [b](N. 7)[/b]

2014 Iran Team Selection Test, 2

find all polynomials with integer coefficients that $P(\mathbb{Z})= ${$p(a):a\in \mathbb{Z}$} has a Geometric progression.

2016 Estonia Team Selection Test, 11

Find all positive integers $n$ such that $(n^2 + 11n - 4) \cdot n! + 33 \cdot 13^n + 4$ is a perfect square

2006 India IMO Training Camp, 2

the positive divisors $d_1,d_2,\cdots,d_k$ of a positive integer $n$ are ordered \[1=d_1<d_2<\cdots<d_k=n\] Suppose $d_7^2+d_{15}^2=d_{16}^2$. Find all possible values of $d_{17}$.

MathLinks Contest 6th, 5.1

Find all solutions in integers of the equation $$x^2 + 2^2 = y^3 + 3^3.$$

2015 Singapore MO Open, 4

Let $f_0, f_1,...$ be the Fibonacci sequence: $f_0 = f_1 = 1, f_n = f_{n-1} + f_{n-2}$ if $n \geq 2$. Determine all possible positive integers $n$ so that there is a positive integer $a$ such that $f_n \leq a \leq f_{n+1}$ and that $a( \frac{1}{f_1}+\frac{1}{f_1f_2}+\cdots+\frac{1}{f_1f_2...f_n} )$ is an integer.

2024 India Regional Mathematical Olympiad, 4

Let $n>1$ be a positive integer. Call a rearrangement $a_1,a_2, \cdots , a_n$ of $1,2, \cdots , n$ [i]nice[/i] if for every $k = 2 ,3, \cdots , n$, we have that $a_1^2 + a_2^2 + \cdots + a_k^2$ is [b]not[/b] divisible by $k$. Determine which positive integers $n>1$ have a [i]nice[/i] arrangement.

2011 India IMO Training Camp, 3

Let $\{a_0,a_1,\ldots\}$ and $\{b_0,b_1,\ldots\}$ be two infinite sequences of integers such that \[(a_{n}-a_{n-1})(a_n-a_{n-2}) +(b_n-b_{n-1})(b_n-b_{n-2})=0\] for all integers $n\geq 2$. Prove that there exists a positive integer $k$ such that \[a_{k+2011}=a_{k+2011^{2011}}.\]

2013 IFYM, Sozopol, 6

Prove that if $t$ is a natural number then there exists a natural number $n>1$ such that $(n,t)=1$ and none of the numbers $n+t,n^2+t,n^3+t,....$ are perfect powers.

2017 Turkey EGMO TST, 1

Let $m,k,n$ be positive integers. Determine all triples $(m,k,n)$ satisfying the following equation: $3^m5^k=n^3+125$

2008 Postal Coaching, 4

Show that for each natural number $n$, there exist $n$ distinct natural numbers whose sum is a square and whose product is a cube.

MBMT Guts Rounds, 2017

[hide=R stands for Ramanujan , P stands for Pascal]they had two problem sets under those two names[/hide] [u] Set 1[/u] [b]R1.1 / P1.1[/b] Find $291 + 503 - 91 + 492 - 103 - 392$. [b]R1.2[/b] Let the operation $a$ & $b$ be defined to be $\frac{a-b}{a+b}$. What is $3$ & $-2$? [b]R1.3[/b]. Joe can trade $5$ apples for $3$ oranges, and trade $6$ oranges for $5$ bananas. If he has $20$ apples, what is the largest number of bananas he can trade for? [b]R1.4[/b] A cone has a base with radius $3$ and a height of $5$. What is its volume? Express your answer in terms of $\pi$. [b]R1.5[/b] Guang brought dumplings to school for lunch, but by the time his lunch period comes around, he only has two dumplings left! He tries to remember what happened to the dumplings. He first traded $\frac34$ of his dumplings for Arman’s samosas, then he gave $3$ dumplings to Anish, and lastly he gave David $\frac12$ of the dumplings he had left. How many dumplings did Guang bring to school? [u]Set 2[/u] [b]R2.6 / P1.3[/b] In the recording studio, Kanye has $10$ different beats, $9$ different manuscripts, and 8 different samples. If he must choose $1$ beat, $1$ manuscript, and $1$ sample for his new song, how many selections can he make? [b]R2.7[/b] How many lines of symmetry does a regular dodecagon (a polygon with $12$ sides) have? [b]R2.8[/b] Let there be numbers $a, b, c$ such that $ab = 3$ and $abc = 9$. What is the value of $c$? [b]R2.9[/b] How many odd composite numbers are there between $1$ and $20$? [b]R2.10[/b] Consider the line given by the equation $3x - 5y = 2$. David is looking at another line of the form ax - 15y = 5, where a is a real number. What is the value of a such that the two lines do not intersect at any point? [u]Set 3[/u] [b]R3.11[/b] Let $ABCD$ be a rectangle such that $AB = 4$ and $BC = 3$. What is the length of BD? [b]R3.12[/b] Daniel is walking at a constant rate on a $100$-meter long moving walkway. The walkway moves at $3$ m/s. If it takes Daniel $20$ seconds to traverse the walkway, find his walking speed (excluding the speed of the walkway) in m/s. [b]R3.13 / P1.3[/b] Pratik has a $6$ sided die with the numbers $1, 2, 3, 4, 6$, and $12$ on the faces. He rolls the die twice and records the two numbers that turn up on top. What is the probability that the product of the two numbers is less than or equal to $12$? [b]R3.14 / P1.5[/b] Find the two-digit number such that the sum of its digits is twice the product of its digits. [b]R3.15[/b] If $a^2 + 2a = 120$, what is the value of $2a^2 + 4a + 1$? PS. You should use hide for answers. R16-30 /P6-10/ P26-30 have been posted [url=https://artofproblemsolving.com/community/c3h2786837p24497019]here[/url], and P11-25 [url=https://artofproblemsolving.com/community/c3h2786880p24497350]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1976 Chisinau City MO, 119

The Serpent Gorynych has $1976$ heads. The fabulous hero can cut down $33, 21, 17$ or $1$ head with one blow of the sword, but at the same time, the Serpent grows, respectively, $48, 0, 14$ or $349$ heads. If all the heads are cut off, then no new heads will grow. Will the hero be able to defeat the Serpent?

1974 IMO Longlists, 7

Let $p$ be a prime number and $n$ a positive integer. Prove that the product \[{N=\frac{1}{p^{n^2}}} \prod_{i=1;2 \nmid i}^{2n-1} \biggl[ \left( (p-1)! \right) \binom{p^2 i}{pi}\biggr]\] Is a positive integer that is not divisible by $p.$

2010 Malaysia National Olympiad, 8

For any number $x$, let $\lfloor x\rfloor$ denotes the greatest integer less than or equal to $x$. A sequence $a_1,a_2,\cdots$ is given, where \[a_n=\left\lfloor{\sqrt{2n}+\dfrac{1}{2}}\right\rfloor.\] How many values of $k$ are there such that $a_k=2010$?

2016 Bosnia And Herzegovina - Regional Olympiad, 2

Let $a$ and $b$ be two positive integers such that $2ab$ divides $a^2+b^2-a$. Prove that $a$ is perfect square

2019 Purple Comet Problems, 17

Find the greatest integer $n$ such that $5^n$ divides $2019! - 2018! + 2017!$.

2010 Indonesia TST, 4

Prove that for all integers $ m$ and $ n$, the inequality \[ \dfrac{\phi(\gcd(2^m \plus{} 1,2^n \plus{} 1))}{\gcd(\phi(2^m \plus{} 1),\phi(2^n \plus{} 1))} \ge \dfrac{2\gcd(m,n)}{2^{\gcd(m,n)}}\] holds. [i]Nanang Susyanto, Jogjakarta [/i]

2003 China Team Selection Test, 2

Positive integer $n$ cannot be divided by $2$ and $3$, there are no nonnegative integers $a$ and $b$ such that $|2^a-3^b|=n$. Find the minimum value of $n$.

2024 Argentina Cono Sur TST, 2

There are $101$ positive integers $a_1, a_2, \ldots, a_{101}$ such that for every index $i$, with $1 \leqslant i \leqslant 101$, $a_i+1$ is a multiple of $a_{i+1}$. Determine the greatest possible value of the largest of the $101$ numbers.

2016 Regional Olympiad of Mexico Northeast, 6

A positive integer $N$ is called [i]northern[/i] if for each digit $d > 0$, there exists a divisor of $N$ whose last digit is $d$. How many [i]northern [/i] numbers less than $2016$ are there with the fewest number of divisors as possible?

2015 Caucasus Mathematical Olympiad, 5

Are there natural $a, b >1000$ , such that for any $c$ that is a perfect square, the three numbers $a, b$ and $c$ are not the lengths of the sides of a triangle?

2006 Federal Competition For Advanced Students, Part 2, 1

Let $ N$ be a positive integer. How many non-negative integers $ n \le N$ are there that have an integer multiple, that only uses the digits $ 2$ and $ 6$ in decimal representation?

2024 Korea - Final Round, P6

Prove that there exists a positive integer $K$ that satisfies the following condition. Condition: For any prime $p > K$, the number of positive integers $a \le p$ that $p^2 \mid a^{p-1} - 1$ is less than $\frac{p}{2^{2024}}$

1954 Putnam, B1

Show that the equation $x^2 -y^2 =a^3$ has always integral solutions for $x$ and $y$ whenever $a$ is a positive integer.