Found problems: 15460
2021 Thailand TSTST, 3
A finite sequence of integers $a_0,,a_1,\dots,a_n$ is called [i]quadratic[/i] if for each $i\in\{1,2,\dots n\}$ we have the equality $|a_i-a_{i-1}|=i^2$.
$\text{(i)}$ Prove that for any two integers $b$ and $c$, there exist a positive integer $n$ and a quadratic sequence with $a_0=b$ and $a_n = c$.
$\text{(ii)}$ Find the smallest positive integer $n$ for which there exists a quadratic sequence with $a_0=0$ and $a_n=2021$.
2022/2023 Tournament of Towns, P2
А positive integer $n{}$ is given. For every $x{}$ consider the sum \[Q(x)=\sum_{k=1}^{10^n}\left\lfloor\frac{x}{k}\right\rfloor.\]Find the difference $Q(10^n)-Q(10^n-1)$.
[i]Alexey Tolpygo[/i]
2005 iTest, 27
Find the sum of all non-zero digits that can repeat at the end of a perfect square. (For example, if $811$ were a perfect square, $1$ would be one of these non-zero digits.)
2014 Saudi Arabia BMO TST, 1
A positive proper divisor is a positive divisor of a number, excluding itself. For positive integers $n \ge 2$, let $f(n)$ denote the number that is one more than the largest proper divisor of $n$. Determine all positive integers $n$ such that $f(f(n)) = 2$.
2017 ABMC, Team
[u]Round 1[/u]
[b]1.1.[/b] A circle has a circumference of $20\pi$ inches. Find its area in terms of $\pi$.
[b]1.2.[/b] Let $x, y$ be the solution to the system of equations: $x^2 + y^2 = 10 \,\,\, , \,\,\, x = 3y$.
Find $x + y$ where both $x$ and $y$ are greater than zero.
[b]1. 3.[/b] Chris deposits $\$ 100$ in a bank account. He then spends $30\%$ of the money in the account on biology books. The next week, he earns some money and the amount of money he has in his account increases by $30 \%$. What percent of his original money does he now have?
[u]Round 2[/u]
[b]2.1.[/b] The bell rings every $45$ minutes. If the bell rings right before the first class and right after the last class, how many hours are there in a school day with $9$ bells?
[b]2.2.[/b] The middle school math team has $9$ members. They want to send $2$ teams to ABMC this year: one full team containing 6 members and one half team containing the other $3$ members. In how many ways can they choose a $6$ person team and a $3$ person team?
[b]2.3.[/b] Find the sum:
$$1 + (1 - 1)(1^2 + 1 + 1) + (2 - 1)(2^2 + 2 + 1) + (3 - 1)(3^2 + 3 + 1) + ...· + (8 - 1)(8^2 + 8 + 1) + (9 - 1)(9^2 + 9 + 1).$$
[u]Round 3[/u]
[b]3.1.[/b] In square $ABHI$, another square $BIEF$ is constructed with diagonal $BI$ (of $ABHI$) as its side. What is the ratio of the area of $BIEF$ to the area of $ABHI$?
[b]3.2.[/b] How many ordered pairs of positive integers $(a, b)$ are there such that $a$ and $b$ are both less than $5$, and the value of $ab + 1$ is prime? Recall that, for example, $(2, 3)$ and $(3, 2)$ are considered different ordered pairs.
[b]3.3.[/b] Kate Lin drops her right circular ice cream cone with a height of $ 12$ inches and a radius of $5$ inches onto the ground. The cone lands on its side (along the slant height). Determine the distance between the highest point on the cone to the ground.
[u]Round 4[/u]
[b]4.1.[/b] In a Museum of Fine Mathematics, four sculptures of Euler, Euclid, Fermat, and Allen, one for each statue, are nailed to the ground in a circle. Bob would like to fully paint each statue a single color such that no two adjacent statues are blue. If Bob only has only red and blue paint, in how many ways can he paint the four statues?
[b]4.2.[/b] Geo has two circles, one of radius 3 inches and the other of radius $18$ inches, whose centers are $25$ inches apart. Let $A$ be a point on the circle of radius 3 inches, and B be a point on the circle of radius $18$ inches. If segment $\overline{AB}$ is a tangent to both circles that does not intersect the line connecting their centers, find the length of $\overline{AB}$.
[b]4.3.[/b] Find the units digit to $2017^{2017!}$.
[u]Round 5[/u]
[b]5.1.[/b] Given equilateral triangle $\gamma_1$ with vertices $A, B, C$, construct square $ABDE$ such that it does not overlap with $\gamma_1$ (meaning one cannot find a point in common within both of the figures). Similarly, construct square $ACFG$ that does not overlap with $\gamma_1$ and square $CBHI$ that does not overlap with $\gamma_1$. Lines $DE$, $FG$, and $HI$ form an equilateral triangle $\gamma_2$. Find the ratio of the area of $\gamma_2$ to $\gamma_1$ as a fraction.
[b]5.2.[/b] A decimal that terminates, like $1/2 = 0.5$ has a repeating block of $0$. A number like $1/3 = 0.\overline{3}$ has a repeating block of length $ 1$ since the fraction bar is only over $ 1$ digit. Similarly, the numbers $0.0\overline{3}$ and $0.6\overline{5}$ have repeating blocks of length $ 1$. Find the number of positive integers $n$ less than $100$ such that $1/n$ has a repeating block of length $ 1$.
[b]5.3.[/b] For how many positive integers $n$ between $1$ and $2017$ is the fraction $\frac{n + 6}{2n + 6}$ irreducible? (Irreducibility implies that the greatest common factor of the numerator and the denominator is $1$.)
[u]Round 6[/u]
[b]6.1.[/b] Consider the binary representations of $2017$, $2017 \cdot 2$, $2017 \cdot 2^2$, $2017 \cdot 2^3$, $... $, $2017 \cdot 2^{100}$. If we take a random digit from any of these binary representations, what is the probability that this digit is a $1$ ?
[b]6.2.[/b] Aaron is throwing balls at Carlson’s face. These balls are infinitely small and hit Carlson’s face at only $1$ point. Carlson has a flat, circular face with a radius of $5$ inches. Carlson’s mouth is a circle of radius $ 1$ inch and is concentric with his face. The probability of a ball hitting any point on Carlson’s face is directly proportional to its distance from the center of Carlson’s face (so when you are $2$ times farther away from the center, the probability of hitting that point is $2$ times as large). If Aaron throws one ball, and it is guaranteed to hit Carlson’s face, what is the probability that it lands in Carlson’s mouth?
[b]6.3.[/b] The birth years of Atharva, his father, and his paternal grandfather form a geometric sequence. The birth years of Atharva’s sister, their mother, and their grandfather (the same grandfather) form an arithmetic sequence. If Atharva’s sister is $5$ years younger than Atharva and all $5$ people were born less than $200$ years ago (from $2017$), what is Atharva’s mother’s birth year?
[u]Round 7[/u]
[b]7. 1.[/b] A function $f$ is called an “involution” if $f(f(x)) = x$ for all $x$ in the domain of $f$ and the inverse of $f$ exists. Find the total number of involutions $f$ with domain of integers between $ 1$ and $ 8$ inclusive.
[b]7.2.[/b] The function $f(x) = x^3$ is an odd function since each point on $f(x)$ corresponds (through a reflection through the origin) to a point on $f(x)$. For example the point $(-2, -8)$ corresponds to $(2, 8)$. The function $g(x) = x^3 - 3x^2 + 6x - 10$ is a “semi-odd” function, since there is a point $(a, b)$ on the function such that each point on $g(x)$ corresponds to a point on $g(x)$ via a reflection over $(a, b)$. Find $(a, b)$.
[b]7.3.[/b] A permutations of the numbers $1, 2, 3, 4, 5$ is an arrangement of the numbers. For example, $12345$ is one arrangement, and $32541$ is another arrangement. Another way to look at permutations is to see each permutation as a function from $\{1, 2, 3, 4, 5\}$ to $\{1, 2, 3, 4, 5\}$. For example, the permutation $23154$ corresponds to the function f with $f(1) = 2$, $f(2) = 3$, $f(3) = 1$, $f(5) = 4$, and $f(4) = 5$, where $f(x)$ is the $x$-th number of the permutation. But the permutation $23154$ has a cycle of length three since $f(1) = 2$, $f(2) = 3$, $f(3) = 1$, and cycles after $3$ applications of $f$ when regarding a set of $3$ distinct numbers in the domain and range. Similarly the permutation $32541$ has a cycle of length three since $f(5) = 1$, $f(1) = 3$, and $f(3) = 5$. In a permutation of the natural numbers between $ 1$ and $2017$ inclusive, find the expected number of cycles
of length $3$.
[u]Round 8[/u]
[b]8.[/b] Find the number of characters in the problems on the accuracy round test. This does not include spaces and problem numbers (or the periods after problem numbers). For example, “$1$. What’s $5 + 10$?” would contain $11$ characters, namely “$W$,” “$h$,” “$a$,” “$t$,” “$’$,” “$s$,” “$5$,” “$+$,” “$1$,” “$0$,” “?”. If the correct answer is $c$ and your answer is $x$, then your score will be $$\max \left\{ 0, 13 -\left\lceil \frac{|x-c|}{100} \right\rceil \right\}$$
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
VI Soros Olympiad 1999 - 2000 (Russia), 11.5
At the currency exchange of the island of Luck they sell dinars (D), guilders (G), reals (R) and thalers (T). Stock brokers have the right to make a purchase and sale transaction with any pair of currencies no more than once per day. The exchange rates are as follows: $D = 6G$, $D = 25R$, $D = 120T$, $G = 4R$, $G = 21T$, $R = 5T$. For example, the entry $D = 6G$ means that $1$ dinar can be bought for $6$ guilders (or $6$ guilders can be sold for $1$ dinar). In the morning the broker had $80$ dinars, $100$ guilders, $100$ reals and $50,400$ thalers. In the evening he had the same number of dinars and thalers. What is the maximum value of this number?
2017 Iran Team Selection Test, 2
Find the largest number $n$ that for which there exists $n$ positive integers such that non of them divides another one, but between every three of them, one divides the sum of the other two.
[i]Proposed by Morteza Saghafian[/i]
1990 IberoAmerican, 3
Let $b$, $c$ be integer numbers, and define $f(x)=(x+b)^2-c$.
i) If $p$ is a prime number such that $c$ is divisible by $p$ but not by $p^{2}$, show that for every integer $n$, $f(n)$ is not divisible by $p^{2}$.
ii) Let $q \neq 2$ be a prime divisor of $c$. If $q$ divides $f(n)$ for some integer $n$, show that for every integer $r$ there exists an integer $n'$ such that $f(n')$ is divisible by $qr$.
1970 Miklós Schweitzer, 4
If $ c$ is a positive integer and $ p$ is an odd prime, what is the smallest residue (in absolute value) of \[ \sum_{n=0}^{\frac{p-1}{2}} \binom{2n}{n}c^n \;(\textrm{mod}\;p\ ) \ ?\]
J. Suranyi
2023 Cono Sur Olympiad, 4
Consider a sequence $\{a_n\}$ of integers, satisfying $a_1=1, a_2=2$ and $a_{n+1}$ is the largest prime divisor of $a_1+a_2+\ldots+a_n$. Find $a_{100}$.
2019 Dutch IMO TST, 4
Find all functions $f : Z \to Z$ satisfying
$\bullet$ $ f(p) > 0$ for all prime numbers $p$,
$\bullet$ $p| (f(x) + f(p))^{f(p)}- x$ for all $x \in Z$ and all prime numbers $p$.
2007 Brazil National Olympiad, 2
Find the number of integers $ c$ such that $ \minus{}2007 \leq c \leq 2007$ and there exists an integer $ x$ such that $ x^2 \plus{} c$ is a multiple of $ 2^{2007}$.
2010 Nordic, 4
A positive integer is called simple if its ordinary decimal representation consists entirely of zeroes and ones. Find the least positive integer $k$ such that each positive integer $n$ can be written as $n = a_1 \pm a_2 \pm a_3 \pm \cdots \pm a_k$ where $a_1, \dots , a_k$ are simple.
1997 India National Olympiad, 2
Show that there do not exist positive integers $m$ and $n$ such that \[ \dfrac{m}{n} + \dfrac{n+1}{m} = 4 . \]
2007 IberoAmerican, 5
Let's say a positive integer $ n$ is [i]atresvido[/i] if the set of its divisors (including 1 and $ n$) can be split in in 3 subsets such that the sum of the elements of each is the same. Determine the least number of divisors an atresvido number can have.
2023 BMT, 8
Define a family of functions $S_k(n)$ for positive integers $n$ and $k$ by the following two rules:
$$S_0(n) = 1,$$
$$S_k(n) = \sum_{d | n} dS_{k-1}(d).$$
Compute the remainder when $S_{30}(30)$ is divided by $1001$.
2018 South Africa National Olympiad, 3
Determine the smallest positive integer $n$ whose prime factors are all greater than $18$, and that can be expressed as $n = a^3 + b^3$ with positive integers $a$ and $b$.
2009 ISI B.Math Entrance Exam, 6
Let $a,b,c,d$ be integers such that $ad-bc$ is non zero. Suppose $b_1,b_2$ are integers both of which are multiples of $ad-bc$. Prove that there exist integers simultaneously satisfying both the equalities $ax+by=b_1, cx+dy=b_2$.
2024 Princeton University Math Competition, A5 / B7
Call a positive integer [I]nice[/I] if the sum of its even proper divisors is larger than the sum of its odd proper divisors. What is the smallest nice number that is congruent to $2 \text{ mod } 4$?
2022-23 IOQM India, 18
Let $m,n$ be natural numbers such that \\
$\hspace{2cm} m+3n-5=2LCM(m,n)-11GCD(m,n).$\\
Find the maximum possible value of $m+n$.
2015 AMC 10, 11
Among the positive integers less than $100$, each of whose digits is a prime number, one is selected at random. What is the probablility that the selected number is prime?
$\textbf{(A) } \dfrac{8}{99}
\qquad\textbf{(B) } \dfrac{2}{5}
\qquad\textbf{(C) } \dfrac{9}{20}
\qquad\textbf{(D) } \dfrac{1}{2}
\qquad\textbf{(E) } \dfrac{9}{16}
$
2023 ELMO Shortlist, N3
Let \(a\), \(b\), and \(n\) be positive integers. A lemonade stand owns \(n\) cups, all of which are initially empty. The lemonade stand has a [i]filling machine[/i] and an [i]emptying machine[/i], which operate according to the following rules: [list] [*]If at any moment, \(a\) completely empty cups are available, the filling machine spends the next \(a\) minutes filling those \(a\) cups simultaneously and doing nothing else. [*]If at any moment, \(b\) completely full cups are available, the emptying machine spends the next \(b\) minutes emptying those \(b\) cups simultaneously and doing nothing else. [/list] Suppose that after a sufficiently long time has passed, both the filling machine and emptying machine work without pausing. Find, in terms of \(a\) and \(b\), the least possible value of \(n\).
[i]Proposed by Raymond Feng[/i]
2011 India IMO Training Camp, 2
Prove that for no integer $ n$ is $ n^7 \plus{} 7$ a perfect square.
EMCC Team Rounds, 2011
[b]p1.[/b] Velociraptor $A$ is located at $x = 10$ on the number line and runs at $4$ units per second. Velociraptor $B$ is located at $x = -10$ on the number line and runs at $3$ units per second. If the velociraptors run towards each other, at what point do they meet?
[b]p2.[/b] Let $n$ be a positive integer. There are $n$ non-overlapping circles in a plane with radii $1, 2, ... , n$. The total area that they enclose is at least $100$. Find the minimum possible value of $n$.
[b]p3.[/b] How many integers between $1$ and $50$, inclusive, are divisible by $4$ but not $6$?
[b]p4.[/b] Let $a \star b = 1 + \frac{b}{a}$. Evaluate $((((((1 \star 1) \star 1) \star 1) \star 1) \star 1) \star 1) \star 1$.
[b]p5.[/b] In acute triangle $ABC$, $D$ and $E$ are points inside triangle $ABC$ such that $DE \parallel BC$, $B$ is closer to $D$ than it is to $E$, $\angle AED = 80^o$ , $\angle ABD = 10^o$ , and $\angle CBD = 40^o$. Find the measure of $\angle BAE$, in degrees.
[b]p6. [/b]Al is at $(0, 0)$. He wants to get to $(4, 4)$, but there is a building in the shape of a square with vertices at $(1, 1)$, $(1, 2)$, $(2, 2)$, and $(2, 1)$. Al cannot walk inside the building. If Al is not restricted to staying on grid lines, what is the shortest distance he can walk to get to his destination?
[b]p7. [/b]Point $A = (1, 211)$ and point $B = (b, 2011)$ for some integer $b$. For how many values of $b$ is the slope of $AB$ an integer?
[b]p8.[/b] A palindrome is a number that reads the same forwards and backwards. For example, $1$, $11$ and $141$ are all palindromes. How many palindromes between $1$ and 1000 are divisible by $11$?
[b]p9.[/b] Suppose $x, y, z$ are real numbers that satisfy: $$x + y - z = 5$$
$$y + z - x = 7$$
$$z + x - y = 9$$ Find $x^2 + y^2 + z^2$.
[b]p10.[/b] In triangle $ABC$, $AB = 3$ and $AC = 4$. The bisector of angle $A$ meets $BC$ at $D$. The line through $D$ perpendicular to $AD$ intersects lines $AB$ and $AC$ at $F$ and $E$, respectively. Compute $EC - FB$. (See the following diagram.)
[img]https://cdn.artofproblemsolving.com/attachments/2/7/e26fbaeb7d1f39cb8d5611c6a466add881ba0d.png[/img]
[b]p11.[/b] Bob has a six-sided die with a number written on each face such that the sums of the numbers written on each pair of opposite faces are equal to each other. Suppose that the numbers $109$, $131$, and $135$ are written on three faces which share a corner. Determine the maximum possible sum of the numbers on the three remaining faces, given that all three are positive primes less than $200$.
[b]p12.[/b] Let $d$ be a number chosen at random from the set $\{142, 143, ..., 198\}$. What is the probability that the area of a rectangle with perimeter $400$ and diagonal length $d$ is an integer?
[b]p13.[/b] There are $3$ congruent circles such that each circle passes through the centers of the other two. Suppose that $A, B$, and $C$ are points on the circles such that each circle has exactly one of $A, B$, or $C$ on it and triangle $ABC$ is equilateral. Find the ratio of the maximum possible area of $ABC$ to the minimum possible area of $ABC$. (See the following diagram.)
[img]https://cdn.artofproblemsolving.com/attachments/4/c/162554fcc6aa21ce3df3ce6a446357f0516f5d.png[/img]
[b]p14.[/b] Let $k$ and $m$ be constants such that for all triples $(a, b, c)$ of positive real numbers,
$$\sqrt{ \frac{4}{a^2}+\frac{36}{b^2}+\frac{9}{c^2}+\frac{k}{ab} }=\left| \frac{2}{a}+\frac{6}{b}+\frac{3}{c}\right|$$
if and only if $am^2 + bm + c = 0$. Find $k$.
[b]p15.[/b] A bored student named Abraham is writing $n$ numbers $a_1, a_2, ..., a_n$. The value of each number is either $1, 2$, or $3$; that is, $a_i$ is $1, 2$ or $3$ for $1 \le i \le n$. Abraham notices that the ordered triples $$(a_1, a_2, a_3), (a_2, a_3, a_4), ..., (a_{n-2}, a_{n-1}, a_n), (a_{n-1}, a_n, a_1), (a_n, a_1, a_2)$$ are distinct from each other. What is the maximum possible value of $n$? Give the answer n, along with an example of such a sequence. Write your answer as an ordered pair. (For example, if the answer were $5$, you might write $(5, 12311)$.)
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2024 Mathematical Talent Reward Programme, 8
Find the remainder when $2024^{2023^{2022^{2021...^{3^{2}}}}} + 2025^{2021^{2017^{2013...^{5^{1}}}}}$ is divided by $19$.