This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2012 China Team Selection Test, 1

Given an integer $n\ge 2$. Prove that there only exist a finite number of n-tuples of positive integers $(a_1,a_2,\ldots,a_n)$ which simultaneously satisfy the following three conditions: [list] [*] $a_1>a_2>\ldots>a_n$; [*] $\gcd (a_1,a_2,\ldots,a_n)=1$; [*] $a_1=\sum_{i=1}^{n}\gcd (a_i,a_{i+1})$,where $a_{n+1}=a_1$.[/list]

2017 CHMMC (Fall), Individual

[b]p1.[/b] A dog on a $10$ meter long leash is tied to a $10$ meter long, infinitely thin section of fence. What is the minimum area over which the dog will be able to roam freely on the leash, given that we can fix the position of the leash anywhere on the fence? [b]p2.[/b] Suppose that the equation $$\begin{tabular}{cccccc} &\underline{C} &\underline{H} &\underline{M}& \underline{M}& \underline{C}\\ +& &\underline{H}& \underline{M}& \underline{M} & \underline{T}\\ \hline &\underline{P} &\underline{U} &\underline{M} &\underline{A} &\underline{C}\\ \end{tabular}$$ holds true, where each letter represents a single nonnegative digit, and distinct letters represent different digits (so that $\underline{C}\, \underline{H}\, \underline{ M}\, \underline{ M}\, \underline{ C}$ and $ \underline{P}\, \underline{U}\, \underline{M}\, \underline{A}\, \underline{C}$ are both five digit positive integers, and the number $\underline{H }\, \underline{M}\, \underline{M}\, \underline{T}$ is a four digit positive integer). What is the largest possible value of the five digit positive integer$\underline{C}\, \underline{H}\, \underline{ M}\, \underline{ M}\, \underline{ C}$ ? [b]p3.[/b] Square $ABCD$ has side length $4$, and $E$ is a point on segment $BC$ such that $CE = 1$. Let $C_1$ be the circle tangent to segments $AB$, $BE$, and $EA$, and $C_2$ be the circle tangent to segments $CD$, $DA$, and $AE$. What is the sum of the radii of circles $C_1$ and $C_2$? [b]p4.[/b] A finite set $S$ of points in the plane is called tri-separable if for every subset $A \subseteq S$ of the points in the given set, we can find a triangle $T$ such that (i) every point of $A$ is inside $T$ , and (ii) every point of $S$ that is not in $A$ is outside$ T$ . What is the smallest positive integer $n$ such that no set of $n$ distinct points is tri-separable? [b]p5.[/b] The unit $100$-dimensional hypercube $H$ is the set of points $(x_1, x_2,..., x_{100})$ in $R^{100}$ such that $x_i \in \{0, 1\}$ for $i = 1$, $2$, $...$, $100$. We say that the center of $H$ is the point $$\left( \frac12,\frac12, ..., \frac12 \right)$$ in $R^{100}$, all of whose coordinates are equal to $1/2$. For any point $P \in R^{100}$ and positive real number $r$, the hypersphere centered at $P$ with radius $r$ is defined to be the set of all points in $R^{100}$ that are a distance $r$ away from $P$. Suppose we place hyperspheres of radius $1/2$ at each of the vertices of the $100$-dimensional unit hypercube $H$. What is the smallest real number $R$, such that a hypersphere of radius $R$ placed at the center of $H$ will intersect the hyperspheres at the corners of $H$? [b]p6.[/b] Greg has a $9\times 9$ grid of unit squares. In each square of the grid, he writes down a single nonzero digit. Let $N$ be the number of ways Greg can write down these digits, so that each of the nine nine-digit numbers formed by the rows of the grid (reading the digits in a row left to right) and each of the nine nine-digit numbers formed by the columns (reading the digits in a column top to bottom) are multiples of $3$. What is the number of positive integer divisors of $N$? [b]p7.[/b] Find the largest positive integer $n$ for which there exists positive integers $x$, $y$, and $z$ satisfying $$n \cdot gcd(x, y, z) = gcd(x + 2y, y + 2z, z + 2x).$$ [b]p8.[/b] Suppose $ABCDEFGH$ is a cube of side length $1$, one of whose faces is the unit square $ABCD$. Point $X$ is the center of square $ABCD$, and $P$ and $Q$ are two other points allowed to range on the surface of cube $ABCDEFHG$. Find the largest possible volume of tetrahedron $AXPQ$. [b]p9.[/b] Deep writes down the numbers $1, 2, 3, ... , 8$ on a blackboard. Each minute after writing down the numbers, he uniformly at random picks some number $m$ written on the blackboard, erases that number from the blackboard, and increases the values of all the other numbers on the blackboard by $m$. After seven minutes, Deep is left with only one number on the black board. What is the expected value of the number Deep ends up with after seven minutes? [b]p10.[/b] Find the number of ordered tuples $(x_1, x_2, x_3, x_4, x_5)$ of positive integers such that $x_k \le 6$ for each index $k = 1$, $2$, $... $,$ 5$, and the sum $$x_1 + x_2 +... + x_5$$ is $1$ more than an integer multiple of $7$. [b]p11.[/b] The equation $$\left( x- \sqrt[3]{13}\right)\left( x- \sqrt[3]{53}\right)\left( x- \sqrt[3]{103}\right)=\frac13$$ has three distinct real solutions $r$, $s$, and $t$ for $x$. Calculate the value of $$r^3 + s^3 + t^3.$$ [b]p12.[/b] Suppose $a$, $b$, and $c$ are real numbers such that $$\frac{ac}{a + b}+\frac{ba}{b + c}+\frac{cb}{c + a}= -9$$ and $$\frac{bc}{a + b}+\frac{ca}{b+c}+\frac{ab}{c + a}= 10.$$ Compute the value of $$\frac{b}{a + b}+\frac{c}{b + c}+\frac{a}{c + a}.$$ [b]p13.[/b] The complex numbers $w$ and $z$ satisfy the equations $|w| = 5$, $|z| = 13$, and $$52w - 20z = 3(4 + 7i).$$ Find the value of the product $wz$. [b]p14.[/b] For $i = 1, 2, 3, 4$, we choose a real number $x_i$ uniformly at random from the closed interval $[0, i]$. What is the probability that $x_1 < x_2 < x_3 < x_4$ ? [b]p15.[/b] The terms of the infinite sequence of rational numbers $a_0$, $a_1$, $a_2$, $...$ satisfy the equation $$a_{n+1} + a_{n-2} = a_na_{n-1}$$ for all integers $n\ge 2$. Moreover, the values of the initial terms of the sequence are $a_0 =\frac52$, $a_1 = 2$ and} $a_2 =\frac52.$ Call a nonnegative integer $m$ lucky if when we write $a_m =\frac{p}{q}$ for some relatively prime positive integers $p$ and $q$, the integer $p + q$ is divisible by $13$. What is the $101^{st}$ smallest lucky number? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1998 Moldova Team Selection Test, 10

Let $P(x)$ denote the product of all (decimal) digits of a natural number $x$. For any positive integer $x_1$, define the sequence $(x_n)$ recursively by $x_{n+1} = x_n + P(x_n)$. Prove or disprove that the sequence $(x_n)$ is necessarily bounded.

Kvant 2024, M2803

Given is a permutation of $1, 2, \ldots, 2023, 2024$ and two positive integers $a, b$, such that for any two adjacent numbers, at least one of the following conditions hold: 1) their sum is $a$; 2) the absolute value of their difference is $b$. Find all possible values of $b$.

1993 IMO Shortlist, 1

a) Show that the set $ \mathbb{Q}^{ + }$ of all positive rationals can be partitioned into three disjoint subsets. $ A,B,C$ satisfying the following conditions: \[ BA = B; \& B^2 = C; \& BC = A; \] where $ HK$ stands for the set $ \{hk: h \in H, k \in K\}$ for any two subsets $ H, K$ of $ \mathbb{Q}^{ + }$ and $ H^2$ stands for $ HH.$ b) Show that all positive rational cubes are in $ A$ for such a partition of $ \mathbb{Q}^{ + }.$ c) Find such a partition $ \mathbb{Q}^{ + } = A \cup B \cup C$ with the property that for no positive integer $ n \leq 34,$ both $ n$ and $ n + 1$ are in $ A,$ that is, \[ \text{min} \{n \in \mathbb{N}: n \in A, n + 1 \in A \} > 34. \]

2016 Romania Team Selection Tests, 1

Given a positive integer $n$, determine all functions $f$ from the first $n$ positive integers to the positive integers, satisfying the following two conditions: [b](1)[/b] $\sum_{k=1}^{n}{f(k)}=2n$; and [b](2)[/b] $\sum_{k\in K}{f(k)}=n$ for no subset $K$ of the first $n$ positive integers.

2004 Iran Team Selection Test, 2

Suppose that $ p$ is a prime number. Prove that the equation $ x^2\minus{}py^2\equal{}\minus{}1$ has a solution if and only if $ p\equiv1\pmod 4$.

2015 Princeton University Math Competition, A2/B3

What is the sum of all positive integers $n$ such that $\text{lcm}(2n, n^2) = 14n - 24$?

MBMT Team Rounds, 2020.43

Let $\sigma_k(n)$ be the sum of the $k^{th}$ powers of the divisors of $n$. For all $k \ge 2$ and all $n \ge 3$, we have that $$\frac{\sigma_k(n)}{n^{k+2}} (2020n + 2019)^2 > m.$$ Find the largest possible value of $m$.

2005 China Girls Math Olympiad, 4

Determine all positive real numbers $ a$ such that there exists a positive integer $ n$ and sets $ A_1, A_2, \ldots, A_n$ satisfying the following conditions: (1) every set $ A_i$ has infinitely many elements; (2) every pair of distinct sets $ A_i$ and $ A_j$ do not share any common element (3) the union of sets $ A_1, A_2, \ldots, A_n$ is the set of all integers; (4) for every set $ A_i,$ the positive difference of any pair of elements in $ A_i$ is at least $ a^i.$

1998 Switzerland Team Selection Test, 2

Find all nonnegative integer solutions $(x,y,z)$ of the equation $\frac{1}{x+2}+\frac{1}{y+2}=\frac{1}{2} +\frac{1}{z+2}$

2023 Bulgarian Autumn Math Competition, 11.3

Find the smallest possible number of divisors a positive integer $n$ may have, which satisfies the following conditions: 1. $24 \mid n+1$; 2. The sum of the squares of all divisors of $n$ is divisible by $48$ ($1$ and $n$ are included).

2021 Indonesia TST, N

For every positive integer $n$, let $p(n)$ denote the number of sets $\{x_1, x_2, \dots, x_k\}$ of integers with $x_1 > x_2 > \dots > x_k > 0$ and $n = x_1 + x_3 + x_5 + \dots$ (the right hand side here means the sum of all odd-indexed elements). As an example, $p(6) = 11$ because all satisfying sets are as follows: $$\{6\}, \{6, 5\}, \{6, 4\}, \{6, 3\}, \{6, 2\}, \{6, 1\}, \{5, 4, 1\}, \{5, 3, 1\}, \{5, 2, 1\}, \{4, 3, 2\}, \{4, 3, 2, 1\}.$$ Show that $p(n)$ equals to the number of partitions of $n$ for every positive integer $n$.

LMT Speed Rounds, 2021 F

[b]p1.[/b] Compute $21 \cdot 21 - 20 \cdot 20$. [b]p2.[/b] A square has side length $2$. If the square is scaled by a factor of $n$, the perimeter of the new square is equal to the area of the original square. Find $10n$. [b]p3.[/b] Kevin has $2$ red marbles and $2$ blue marbles in a box. He randomly grabs two marbles. The probability that they are the same color can be expressed as $\frac{a}{b}$ for relatively prime integers $a$ and $b$. Find $a +b$. [b]p4.[/b] In a classroom, if the teacher splits the students into groups of $3$ or $4$, there is one student left out. If the students formgroups of $5$, every student is in a group. What is the fewest possible number of students in this classroom? [b]p5.[/b] Find the sum of all positive integer values of $x$ such that $\lfloor \sqrt{x!} \rfloor = x$. [b]p6.[/b] Find the number of positive integer factors of $2021^{(2^0+2^1)} \cdot 1202^{(1^2+0^2)}$. [b]p7.[/b] Let $n$ be the number of days over a $13$ year span. Find the difference between the greatest and least possible values of $n$. Note: All years divisible by $4$ are leap years unless they are divisible by 100 but not $400$. For example, $2000$ and $2004$ are leap years, but $1900$ is not. [b]p8.[/b] In isosceles $\vartriangle ABC$, $AB = AC$, and $\angle ABC = 72^o$. The bisector of $\angle ABC$ intersects $AC$ at $D$. Given that $BC = 30$, find $AD$. [b]p9.[/b] For an arbitrary positive value of $x$, let $h$ be the area of a regular hexagon with side length $x$ and let $s$ be the area of a square with side length $x$. Find the value of $\left \lfloor \frac{10h}{s} \right \rfloor$. [b]p10.[/b] There is a half-full tub of water with a base of $4$ inches by $5$ inches and a height of $8$ inches. When an infinitely long stick with base $1$ inch by $1$ inch is inserted vertically into the bottom of the tub, the number of inches the water level rises by can be written as $\frac{a}{b}$ where $a$ and $b$ are relatively prime positive integers. Find $a +b$. [b]p11.[/b] Find the sum of all $4$-digit numbers with digits that are a permutation of the digits in $2021$. Note that positive integers cannot have first digit $0$. [b]p12.[/b] A $10$-digit base $8$ integer is chosen at random. The probability that it has $30$ digits when written in base $2$ can be expressed as $\frac{a}{b}$, where $a$ and $b$ are relatively prime positive integers. Find $a +b$. [b]p13.[/b] Call a natural number sus if it can be expressed as $k^2 +k +1$ for some positive integer $k$. Find the sum of all sus integers less than $2021$. [b]p14.[/b] In isosceles triangle $ABC$, $D$ is the intersection of $AB$ and the perpendicular to $BC$ through $C$. Given that $CD = 5$ and $AB = BC = 1$, find $\sec^2 \angle ABC$. [b]p15.[/b] Every so often, the minute and hour hands of a clock point in the same direction. The second time this happens after 1:00 is a b minutes later, where a and b are relatively prime positive integers. Find a +b. [b]p16.[/b] The $999$-digit number $N = 123123...123$ is composed of $333$ iterations of the number $123$. Find the least nonnegative integerm such that $N +m$ is a multiple of $101$. [b]p17.[/b] The sum of the reciprocals of the divisors of $2520$ can be written as $\frac{a}{b}$, where $a$ and $b$ are relatively prime positive integers. Find $a +b$. [b]p18.[/b] Duncan, Paul, and $6$ Atreides guards are boarding three helicopters. Duncan, Paul, and the guards enter the helicopters at random, with the condition that Duncan and Paul do not enter the same helicopter. Note that not all helicoptersmust be occupied. The probability that Paul has more guards with him in his helicopter than Duncan does can be written as $\frac{a}{b}$ where $a$ and $b$ are relatively prime positive integers. Find $a +b$. [b]p19.[/b] Let the minimum possible distance from the origin to the parabola $y = x^2 -2021$ be $d$. The value of d2 can be expressed as $\frac{a}{b}$ where $a$ and $b$ are relatively prime positive integers. Find $a +b$. [b]p20.[/b] In quadrilateral $ABCD$ with interior point $E$ and area $49 \sqrt3$, $\frac{BE}{CE}= 2 \sqrt3$, $\angle ABC = \angle BCD = 90^o$, and $\vartriangle ABC \sim \vartriangle BCD \sim \vartriangle BEC$. The length of $AD$ can be expressed aspn where $n$ is a positive integer. Find $n$. [b]p21.[/b] Find the value of $$\sum^{\infty}_{i=1}\left( \frac{i^2}{2^{i-1}}+\frac{i^2}{2^{i}}+\frac{i^2}{2^{i+1}}\right)=\left( \frac{1^2}{2^{0}}+\frac{1^2}{2^{1}}+\frac{1^2}{2^{2}}\right)+\left( \frac{2^2}{2^{1}}+\frac{2^2}{2^{2}}+\frac{2^2}{2^{3}}\right)+\left( \frac{3^2}{2^{2}}+\frac{2^2}{2^{3}}+\frac{2^2}{2^{4}}\right)+...$$ [b]p22.[/b] Five not necessarily distinct digits are randomly chosen in some order. Let the probability that they form a nondecreasing sequence be $\frac{a}{b}$ , where $a$ and $b$ are relatively prime positive integers. Find the remainder when $a +b$ is divided by$ 1000$. [b]p23.[/b] Real numbers $a$, $b$, $c$, and d satisfy $$ac -bd = 33$$ $$ad +bc = 56.$$ Given that $a^2 +b^2 = 5$, find the sum of all possible values of $c^2 +d^2$. [b]p24.[/b] Jeff has a fair tetrahedral die with sides labeled $0$, $1$, $2$, and $3$. He continuously rolls the die and record the numbers rolled in that order. For example, if he rolls a $1$, then rolls a $2$, and then rolls a $3$, he writes down $123$. He keeps rolling the die until he writes the substring $2021$. What is the expected number of times he rolls the die? [b]p25.[/b] In triangle $ABC$, $BC = 2\sqrt3$, and $AB = AC = 4\sqrt3$. Circle $\omega$ with center $O$ is tangent to segment $AB$ at $T$ , and $\omega$ is also tangent to ray $CB$ past $B$ at another point. Points $O, T$ , and $C$ are collinear. Let $r$ be the radius of $\omega$. Given that $r^2 = \frac{a}{b}$ where $a$ and $b$ are relatively prime positive integers, find $a +b$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2014 Baltic Way, 20

Consider a sequence of positive integers $a_1, a_2, a_3, . . .$ such that for $k \geq 2$ we have $a_{k+1} =\frac{a_k + a_{k-1}}{2015^i},$ where $2015^i$ is the maximal power of $2015$ that divides $a_k + a_{k-1}.$ Prove that if this sequence is periodic then its period is divisible by $3.$

1992 Hungary-Israel Binational, 5

We examine the following two sequences: The Fibonacci sequence: $F_{0}= 0, F_{1}= 1, F_{n}= F_{n-1}+F_{n-2 }$ for $n \geq 2$; The Lucas sequence: $L_{0}= 2, L_{1}= 1, L_{n}= L_{n-1}+L_{n-2}$ for $n \geq 2$. It is known that for all $n \geq 0$ \[F_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}},L_{n}=\alpha^{n}+\beta^{n}, \] where $\alpha=\frac{1+\sqrt{5}}{2},\beta=\frac{1-\sqrt{5}}{2}$. These formulae can be used without proof. Show that $L_{2n+1}+(-1)^{n+1}(n \geq 1)$ can be written as a product of three (not necessarily distinct) Fibonacci numbers.

1992 Polish MO Finals, 3

Show that $(k^3)!$ is divisible by $(k!)^{k^2+k+1}$.

2022 CMIMC, 1.8

Find the largest $c > 0$ such that for all $n \ge 1$ and $a_1,\dots,a_n, b_1,\dots, b_n > 0$ we have $$\sum_{j=1}^n a_j^4 \ge c\sum_{k = 1}^n \frac{\left(\sum_{j=1}^k a_jb_{k+1-j}\right)^4}{\left(\sum_{j=1}^k b_j^2j!\right)^2}$$ [i]Proposed by Grant Yu[/i]

2008 Princeton University Math Competition, A10/B10

What is the smallest number $n$ such that you can choose $n$ distinct odd integers $a_1, a_2,..., a_n$, none of them $1$, with $\frac{1}{a_1}+ \frac{1}{a_2}+ ...+ \frac{1}{a_n}= 1$?

2011 AIME Problems, 1

Gary purchased a large beverage, but drank only $m/n$ of this beverage, where $m$ and $n$ are relatively prime positive integers. If Gary had purchased only half as much and drunk twice as much, he would have wasted only $\frac{2}{9}$ as much beverage. Find $m+n$.

KoMaL A Problems 2023/2024, A. 858

Prove that the only integer solution of the following system of equations is $u=v=x=y=z=0$: $$uv=x^2-5y^2, (u+v)(u+2v)=x^2-5z^2$$

2022-23 IOQM India, 8

Suppose the prime numbers $p$ and $q$ satisfy $q^2+3p=197p^2+q$.Write $\frac{p}{q}$ as $l+\frac{m}{n}$, where $l,m,n$ are positive integers , $m<n$ and $GCD(m,n)=1$. Find the maximum value of $l+m+n$.

2024 Turkey Olympic Revenge, 5

Let $a$ be a positive real number. Prove that a) There exists $n\in \mathbb{N}$ with $\frac{\sigma(\varphi(n))}{\varphi(\sigma(n))} > a$. b) There exists $n\in \mathbb{N}$ with $\frac{\sigma(\varphi(n))}{\varphi(\sigma(n))} < a$. (As usual, $\sigma(n) = \sum_{d\mid n} d$ and $\varphi(n)$ is the number of integers $1\le m\le n$ which are coprime with $n$.) Proposed by [i]Deniz Can Karaçelebi[/i]

2022 VIASM Summer Challenge, Problem 1

Find all prime number pairs $(p,q)$ such that $p(p^2-p-1)=q(2q+3).$

2018 All-Russian Olympiad, 7

Given a sequence of positive integers $a_1,a_2,a_3,...$ defined by $a_n=\lfloor n^{\frac{2018}{2017}}\rfloor$. Show that there exists a positive integer $N$ such that among any $N$ consecutive terms in the sequence, there exists a term whose decimal representation contain digit $5$.