This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2020 Poland - Second Round, 5.

Let $p>$ be a prime number and $S$ be a set of $p+1$ integers. Prove that there exist pairwise distinct numbers $a_1,a_2,...,a_{p-1}\in S$ that $$ a_1+2a_2+3a_3+...+(p-1)a_{p-1}$$ is divisible by $p$.

Maryland University HSMC part II, 2018

[b]p1.[/b] I have $6$ envelopes full of money. The amounts (in dollars) in the $6$ envelopes are six consecutive integers. I give you one of the envelopes. The total amount in the remaining $5$ envelopes is $\$2018$. How much money did I give you? [b]p2. [/b]Two tangents $AB$ and $AC$ are drawn to a circle from an exterior point $A$. Let $D$ and $E$ be the midpoints of the line segments $AB$ and $AC$. Prove that the line DE does not intersect the circle. [b]p3.[/b] Let $n \ge 2$ be an integer. A subset $S$ of {0, 1, . . . , n − 2} is said to be closed whenever it satisfies all of the following properties: • $0 \in S$ • If $x \in S$ then $n - 2 - x \in S$ • If $x \in S$, $y \ge 0$, and $y + 1$ divides $x + 1$ then $y \in S$. Prove that $\{0, 1, . . . , n - 2\}$ is the only closed subset if and only if $n$ is prime. (Note: “$\in$” means “belongs to”.) [b]p4.[/b] Consider the $3 \times 3$ grid shown below $\begin{tabular}{|l|l|l|l|} \hline A & B & C \\ \hline D & E & F \\ \hline G & H & I \\ \hline \end{tabular}$ A knight move is a pair of elements $(s, t)$ from $\{A, B, C, D, E, F, G, H, I\}$ such that $s$ can be reached from $t$ by moving either two spaces horizontally and one space vertically, or by moving one space horizontally and two spaces vertically. (For example, $(B, I)$ is a knight move, but $(G, E)$ is not.) A knight path of length $n$ is a sequence $s_0$, $s_1$, $s_2$, $. . . $, $s_n$ drawn from the set $\{A, B, C, D, E, F, G, H, I\}$ (with repetitions allowed) such that each pair $(s_i , s_{i+1})$ is a knight move. Let $N$ be the total number of knight paths of length $2018$ that begin at $A$ and end at $A$. Let $M$ be the total number of knight paths of length $2018$ that begin at $A$ and end at $I$. Compute the value $(N- M)$, with proof. (Your answer must be in simplified form and may not involve any summations.) [b]p5.[/b] A strip is defined to be the region of the plane lying on or between two parallel lines. The width of the strip is the distance between the two lines. Consider a finite number of strips whose widths sum to a number $d < 1$, and let $D$ be a circular closed disk of diameter $1$. Prove or disprove: no matter how the strips are placed in the plane, they cannot entirely cover the disk $D$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2012 IMO Shortlist, N7

Find all positive integers $n$ for which there exist non-negative integers $a_1, a_2, \ldots, a_n$ such that \[ \frac{1}{2^{a_1}} + \frac{1}{2^{a_2}} + \cdots + \frac{1}{2^{a_n}} = \frac{1}{3^{a_1}} + \frac{2}{3^{a_2}} + \cdots + \frac{n}{3^{a_n}} = 1. \] [i]Proposed by Dusan Djukic, Serbia[/i]

2020 Denmark MO - Mohr Contest, 3

Which positive integers satisfy the following three conditions? a) The number consists of at least two digits. b) The last digit is not zero. c) Inserting a zero between the last two digits yields a number divisible by the original number.

2007 May Olympiad, 3

Jorge chooses $6$ different positive integers and writes one on each face of a cube. He threw his bucket three times. The first time his cube showed the number $5$ facing up and also the sum of the numbers on the faces sides was $20$. The second time his cube showed the number $7$ facing up and also the sum of the numbers on the faces sides was $17$. The third time his cube showed the number $4$ up, plus all the numbers on the side faces. They turned out to be primes. What are the numbers that Jorge chose and how did he distribute them on the faces of the cube? Analyze all odds. Remember that $1$ is not prime.

2021 Auckland Mathematical Olympiad, 4

Prove that there exist two powers of $7$ whose difference is divisible by $2021$.

2002 Korea Junior Math Olympiad, 5

Find all integer solutions to the equation $$x^3+2y^3+4z^3+8xyz=0$$

2023 SG Originals, Q3

Let $n \geq 2$ be a positive integer. For a positive integer $a$, let $Q_a(x)=x^n+ax$. Let $p$ be a prime and let $S_a=\{b | 0 \leq b \leq p-1, \exists c \in \mathbb {Z}, Q_a(c) \equiv b \pmod p \}$. Show that $\frac{1}{p-1}\sum_{a=1}^{p-1}|S_a|$ is an integer.

2019 South East Mathematical Olympiad, 3

Let $f:\mathbb{N}\rightarrow \mathbb{N}$ be a function such that $f(ab)$ divides $\max \{f(a),b\}$ for any positive integers $a,b$. Must there exist infinitely many positive integers $k$ such that $f(k)=1$?

2018 European Mathematical Cup, 4

Let $x; y; m; n$ be integers greater than $1$ such that

2025 Kyiv City MO Round 1, Problem 4

Find all functions \( f : \mathbb{N} \to \mathbb{N} \) that satisfy the following condition: for any positive integers \( m \) and \( n \) such that \( m > n \) and \( m \) is not divisible by \( n \), if we denote by \( r \) the remainder of the division of \( m \) by \( n \), then the remainder of the division of \( f(m) \) by \( n \) is \( f(r) \). [i]Proposed by Mykyta Kharin[/i]

2008 Flanders Math Olympiad, 2

Let $a, b$ and $c$ be integers such that $a+b+c = 0$. Prove that $\frac12(a^4 +b^4 +c^4)$ is a perfect square.

1965 Leningrad Math Olympiad, grade 8

[b]8.1[/b] A $24 \times 60$ rectangle is divided by lines parallel to it sides, into unit squares. Draw another straight line so that after that the rectangle was divided into the largest possible number of parts. [b]8.2[/b] Engineers always tell the truth, but businessmen always lie. F and G are engineers. A declares that, B asserts that, C asserts that, D says that, E insists that, F denies that G is an businessman. C also announces that D is a businessman. If A is a businessman, then how much total businessmen in this company? [b]8.3 [/b]There is a straight road through the field. A tourist stands on the road at a point ?. It can walk along the road at a speed of 6 km/h and across the field at a speed of 3 km/h. Find the locus of the points where the tourist can get there within an hour's walk. [b]8.4 / 7.5 [/b] Let $ [A]$ denote the largest integer not greater than $A$. Solve the equation: $[(5 + 6x)/8] = (15x-7)/5$ . [b]8.5.[/b] In some state, every two cities are connected by a road. Each road is only allowed to move in one direction. Prove that there is a city from which you can travel around everything. state, having visited each city exactly once. [b]8.6[/b] Find all eights of prime numbers such that the sum of the squares of the numbers in the eight is 992 less than their quadruple product. [hide=original wording]Найдите все восьмерки простых чисел такие, что сумма квадратов чисел в восьмерке на 992 меньше, чем их учетверенное произведение.[/hide] PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3988081_1965_leningrad_math_olympiad]here[/url].

2008 Switzerland - Final Round, 6

Determine all odd natural numbers of the form $$\frac{p + q}{p - q},$$ where $p > q$ are prime numbers.

2014 ELMO Shortlist, 8

Let $\mathbb N$ denote the set of positive integers. Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that: (i) The greatest common divisor of the sequence $f(1), f(2), \dots$ is $1$. (ii) For all sufficiently large integers $n$, we have $f(n) \neq 1$ and \[ f(a)^n \mid f(a+b)^{a^{n-1}} - f(b)^{a^{n-1}} \] for all positive integers $a$ and $b$. [i]Proposed by Yang Liu[/i]

2017 CMIMC Number Theory, 5

One can define the greatest common divisor of two positive rational numbers as follows: for $a$, $b$, $c$, and $d$ positive integers with $\gcd(a,b)=\gcd(c,d)=1$, write \[\gcd\left(\dfrac ab,\dfrac cd\right) = \dfrac{\gcd(ad,bc)}{bd}.\] For all positive integers $K$, let $f(K)$ denote the number of ordered pairs of positive rational numbers $(m,n)$ with $m<1$ and $n<1$ such that \[\gcd(m,n)=\dfrac{1}{K}.\] What is $f(2017)-f(2016)$?

2023 Durer Math Competition Finals, 10

One day Mnemosyne decided to colour all natural numbers in increasing order. She coloured $0$, $1$ and $2$ in brown, and her favourite number, $3$, in gold. From then on, for any number whose sum of digits (in the decimal system) was a golden number less than the number itself, she coloured it gold, but coloured the rest of the numbers brown. How many four-digit numbers were coloured gold by Mnemosyne? [i]The set of natural numbers includes[/i] $0$.

1908 Eotvos Mathematical Competition, 1

Given two odd integers $a$ and $b$; prove that $a^3 -b^3$ is divisible by $2^n$ if and only if $a-b$ is divisible by $2^n$.

2021 Malaysia IMONST 1, 17

Determine the sum of all positive integers $n$ that satisfy the following condition: when $6n + 1$ is written in base $10$, all its digits are equal.

EMCC Team Rounds, 2022

[b]p1.[/b] Compute $1 + 3 + 6 + 10 + 15 + 21 + 28 + 36 + 45 + 55$. [b]p2.[/b] Given that $a$, $b$, and $c$ are positive integers such that $a+b = 9$ and $bc = 30$, find the minimum possible value of $a + c$. [b]p3.[/b] Points $X$ and $Y$ lie outside regular pentagon $ABCDE$ such that $ABX$ and $DEY$ are equilateral triangles. Find the degree measure of $\angle XCY$ . [b]p4.[/b] Let $N$ be the product of the positive integer divisors of $8!$, including itself. The largest integer power of $2$ that divides $N$ is $2^k$. Compute $k$. [b]p5.[/b] Let $A=(-20, 22)$, $B = (k, 0)$, and $C = (202, 2)$ be points on the coordinate plane. Given that $\angle ABC = 90^o$, find the sum of all possible values of $k$. [b]p6.[/b] Tej is typing a string of $L$s and $O$s that consists of exactly $7$ $L$s and $4$ $O$s. How many different strings can he type that do not contain the substring ‘$LOL$’ anywhere? A substring is a sequence of consecutive letters contained within the original string. [b]p7.[/b] How many ordered triples of integers $(a, b, c)$ satisfy both $a+b-c = 12$ and $a^2+b^2-c^2 = 24$? [b]p8.[/b] For how many three-digit base-$7$ numbers $\overline{ABC}_7$ does $\overline{ABC}_7$ divide $\overline{ABC}_{10}$? (Note: $\overline{ABC}_D$ refers to the number whose digits in base $D$ are, from left to right, $A$, $B$, and $C$; for example, $\overline{123}_4$ equals $27$ in base ten). [b]p9.[/b] Natasha is sitting on one of the $35$ squares of a $5$-by-$7$ grid of squares. Wanda wants to walk through every square on the board exactly once except the one Natasha is on, starting and ending on any $2$ squares she chooses, such that from any square she can only go to an adjacent square (two squares are adjacent if they share an edge). How many squares can Natasha choose to sit on such that Wanda cannot go on her walk? [b]p10.[/b] In triangle $ABC$, $AB = 13$, $BC = 14$, and $CA = 15$. Point $P$ lies inside $ABC$ and points $D,E$, and $F$ lie on sides $BC$, $CA$, and $AB$, respectively, so that $PD \perp BC$, $PE \perp CA$, and $PF \perp AB$. Given that $PD$, $PE$, and $PF$ are all integers, find the sum of all possible distinct values of $PD \cdot PE \cdot PF$. [b]p11.[/b] A palindrome is a positive integer which is the same when read forwards or backwards. Find the sum of the two smallest palindromes that are multiples of $137$. [b]p12.[/b] Let $P(x) = x^2+px+q$ be a quadratic polynomial with positive integer coefficients. Compute the least possible value of p such that 220 divides p and the equation $P(x^3) = P(x)$ has at least four distinct integer solutions. [b]p13.[/b] Everyone at a math club is either a truth-teller, a liar, or a piggybacker. A truth-teller always tells the truth, a liar always lies, and a piggybacker will answer in the style of the previous person who spoke (i.e., if the person before told the truth, they will tell the truth, and if the person before lied, then they will lie). If a piggybacker is the first one to talk, they will randomly either tell the truth or lie. Four seniors in the math club were interviewed and here was their conversation: Neil: There are two liars among us. Lucy: Neil is a piggybacker. Kevin: Excluding me, there are more truth-tellers than liars here. Neil: Actually, there are more liars than truth-tellers if we exclude Kevin. Jacob: One plus one equals three. Define the base-$4$ number $M = \overline{NLKJ}_4$, where each digit is $1$ for a truth-teller, $2$ for a piggybacker, and $3$ for a liar ($N$ corresponds to Neil, $L$ to Lucy, $K$ corresponds to Kevin, and $J$ corresponds to Jacob). What is the sum of all possible values of $M$, expressed in base $10$? [b]p14.[/b] An equilateral triangle of side length $8$ is tiled by $64$ equilateral triangles of unit side length to form a triangular grid. Initially, each triangular cell is either living or dead. The grid evolves over time under the following rule: every minute, if a dead cell is edge-adjacent to at least two living cells, then that cell becomes living, and any living cell remains living. Given that every cell in the grid eventually evolves to be living, what is the minimum possible number of living cells in the initial grid? [b]p15.[/b] In triangle $ABC$, $AB = 7$, $BC = 11$, and $CA = 13$. Let $\Gamma$ be the circumcircle of $ABC$ and let $M$, $N$, and $P$ be the midpoints of minor arcs $BC$ , $CA$, and $AB$ of $\Gamma$, respectively. Given that $K$ denotes the area of $ABC$ and $L$ denotes the area of the intersection of $ABC$ and $MNP$, the ratio $L/K$ can be written as $a/b$ , where $a$ and $b$ are relatively prime positive integers. Compute $a + b$. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2012 Turkmenistan National Math Olympiad, 6

Prove that $1^{2011}+2^{2011}+3^{2011}+...+2012^{2011} $ is divisible by $2025078$.

1998 IMO Shortlist, 5

Determine all positive integers $n$ for which there exists an integer $m$ such that ${2^{n}-1}$ is a divisor of ${m^{2}+9}$.

1998 Irish Math Olympiad, 3

Show that no integer of the form $ xyxy$ in base $ 10$ can be a perfect cube. Find the smallest base $ b>1$ for which there is a perfect cube of the form $ xyxy$ in base $ b$.

2016 Gulf Math Olympiad, 2

Let $x$ be a real number that satisfies $x^1 + x^{-1} = 3$ Prove that $x^n + x^{-n}$ is an positive integer , then prove that the positive integer $x^{3^{1437}}+x^{3^{-1437}}$ is divisible by at least $1439 \times 2^{1437}$ positive integers

2014 Dutch IMO TST, 1

Determine all pairs $(a,b)$ of positive integers satisfying \[a^2+b\mid a^2b+a\quad\text{and}\quad b^2-a\mid ab^2+b.\]