Found problems: 15460
1980 IMO, 1
Let $p(x)$ be a polynomial with integer coefficients such that $p(0)=p(1)=1$. We define the sequence $a_0, a_1, a_2, \ldots, a_n, \ldots$ that starts with an arbitrary nonzero integer $a_0$ and satisfies $a_{n+1}=p(a_n)$ for all $n \in \mathbb N\cup \{0\}$. Prove that $\gcd(a_i,a_j)=1$ for all $i,j \in \mathbb N \cup \{0\}$.
2021 Saudi Arabia Training Tests, 37
Given $n \ge 2$ distinct positive integers $a_1, a_2, ..., a_n$ none of which is a perfect cube. Find the maximal possible number of perfect cubes among their pairwise products.
2010 IFYM, Sozopol, 5
Let n is a natural number,for which $\sqrt{1+12n^2}$ is a whole number.Prove that $2+2\sqrt{1+12n^2}$ is perfect square.
1962 Swedish Mathematical Competition, 3
Find all pairs $(m, n)$ of integers such that $n^2 - 3mn + m - n = 0$.
Mid-Michigan MO, Grades 5-6, 2019
[b]p1.[/b] It takes $12$ months for Santa Claus to pack gifts. It would take $20$ months for his apprentice to do the job. If they work together, how long will it take for them to pack the gifts?
[b]p2.[/b] All passengers on a bus sit in pairs. Exactly $2/5$ of all men sit with women, exactly $2/3$ of all women sit with men. What part of passengers are men?
[b]p3.[/b] There are $100$ colored balls in a box. Every $10$-tuple of balls contains at least two balls of the same color. Show that there are at least $12$ balls of the same color in the box.
[b]p4.[/b] There are $81$ wheels in storage marked by their two types, say first and second type. Wheels of the same type weigh equally. Any wheel of the second type is much lighter than a wheel of the first type. It is known that exactly one wheel is marked incorrectly. Show that one can determine which wheel is incorrectly marked with four measurements.
[b]p5.[/b] Remove from the figure below the specified number of matches so that there are exactly $5$ squares of equal size left:
(a) $8$ matches
(b) $4$ matches
[img]https://cdn.artofproblemsolving.com/attachments/4/b/0c5a65f2d9b72fbea50df12e328c024a0c7884.png[/img]
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2021-IMOC qualification, N1
Prove: if $2^{2^n-1}-1$ is a prime, then $n$ is a prime.
V Soros Olympiad 1998 - 99 (Russia), grade8
[b]p1.[/b] Given two irreducible fractions. The denominator of the first fraction is $4$, the denominator of the second fraction is $6$. What can the denominator of the product of these fractions be equal to if the product is represented as an irreducible fraction?
[b]p2.[/b] Three horses compete in the race. The player can bet a certain amount of money on each horse. Bets on the first horse are accepted in the ratio $1: 4$. This means that if the first horse wins, then the player gets back the money bet on this horse, and four more times the same amount. Bets on the second horse are accepted in the ratio $1:3$, on the third -$ 1:1$. Money bet on a losing horse is not returned. Is it possible to bet in such a way as to win whatever the outcome of the race?
[b]p3.[/b] A quadrilateral is inscribed in a circle, such that the center of the circle, point $O$, is lies inside it. Let $K$, $L$, $M$, $N$ be the midpoints of the sides of the quadrilateral, following in this order. Prove that the bisectors of angles $\angle KOM$ and $\angle LOC$ are perpendicular (Fig.).
[img]https://cdn.artofproblemsolving.com/attachments/b/8/ea4380698eba7f4cc2639ce20e3057e0294a7c.png[/img]
[b]p4.[/b] Prove that the number$$\underbrace{33...33}_{1999 \,\,\,3s}1$$ is not divisible by $7$.
[b]p5.[/b] In triangle $ABC$, the median drawn from vertex $A$ to side $BC$ is four times smaller than side $AB$ and forms an angle of $60^o$ with it. Find the greatest angle of this triangle.
[b]p6.[/b] Given a $7\times 8$ rectangle made up of 1x1 cells. Cut it into figures consisting of $1\times 1$ cells, so that each figure consists of no more than $5$ cells and the total length of the cuts is minimal (give an example and prove that this cannot be done with a smaller total length of the cuts). You can only cut along the boundaries of the cells.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c2416727_soros_olympiad_in_mathematics]here.[/url]
DMM Devil Rounds, 2003
[b]p1.[/b] Find the smallest positive integer which is $1$ more than multiple of $3$, $2$ more than a multiple of $4$, and $4$ more than a multiple of $7$.
[b]p2.[/b] Let $p = 4$, and let $a =\sqrt1$, $b =\sqrt2$, $c =\sqrt3$, $...$. Compute the value of $(p-a)(p-b) ... (p-z)$.
[b]p3.[/b] There are $6$ points on the circumference of a circle. How many convex polygons are there having vertices on these points?
[b]p4.[/b] David and I each have a sheet of computer paper, mine evenly spaced by $19$ parallel lines into $20$ sections, and his evenly spaced by $29$ parallel lines into $30$ sections. If our two sheets are overlayed, how many pairs of lines are perfectly incident?
[b]p5.[/b] A pyramid is created by stacking equilateral triangles of balls, each layer having one fewer ball per side than the triangle immediately beneath it. How many balls are used if the pyramid’s base has $5$ balls to a side?
[b]p6.[/b] Call a positive integer $n$ good if it has $3$ digits which add to $4$ and if it can be written in the form $n = k^2$, where $k$ is also a positive integer. Compute the average of all good numbers.
[b]p7.[/b] John’s birthday cake is a scrumptious cylinder of radius $6$ inches and height $3$ inches. If his friends cut the cake into $8$ equal sectors, what is the total surface area of a piece of birthday cake?
[b]p8.[/b] Evaluate $\sum^{10}_{i=1}\sum^{10}_{j=1} ij$.
[b]p9.[/b] If three numbers $a$, $b$, and $c$ are randomly selected from the interval $[-2, 2]$, what is the probability that $a^2 + b^2 + c^2 \ge 4$?
[b]p10.[/b] Evaluate $\sum^{\infty}_{x=2} \frac{2}{x^2 - 1}.$
[b]p11.[/b] Consider $4x^2 - kx - 1 = 0$. If the roots of this polynomial are $\sin \theta$ and $\cos \theta$, compute $|k|$.
[b]p12.[/b] Given that $65537 = 2^{16} + 1$ is a prime number, compute the number of primes of the form $2^n + 1$ (for $n \ge 0$) between $1$ and $10^6$.
[b]p13.[/b] Compute $\sin^{-1}(36/85) + \cos^{-1}(4/5) + \cos^{-1}(15/17).$
[b]p14.[/b] Find the number of integers $n$, $1\le n \le 2003$, such that $n^{2003} - 1$ is a multiple of $10$.
[b]p15.[/b] Find the number of integers $n,$ $1 \le n \le 120$, such that $n^2$ leaves remainder $1$ when divided by $120$.
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2008 Argentina National Olympiad, 1
$ 101$ positive integers are written on a line. Prove that we can write signs $ \plus{}$, signs $ \times$ and parenthesis between them, without changing the order of the numbers, in such a way that the resulting expression makes sense and the result is divisible by $ 16!$.
1996 Singapore MO Open, 3
Let $n$ be a positive integer. Prove that there is no positive integer solution to thxe equation $(x + 2)^n - x^n = 1 + 7^n$.
2017 All-Russian Olympiad, 1
$S=\sin{64x}+\sin{65x}$ and $C=\cos{64x}+\cos{65x}$ are both rational for some $x$. Prove, that for one of these sums both summands are rational too.
2021 Junior Balkan Team Selection Tests - Moldova, 4
Find all positive integers $a$, $b$, $c$, and $p$, where $p$ is a prime number, such that
$73p^2 + 6 = 9a^2 + 17b^2 + 17c^2$.
2009 Pan African, 2
Find all functions $f:\mathbb{N}_0\to\mathbb{N}_0$ for which $f(0)=0$ and
\[f(x^2-y^2)=f(x)f(y) \]
for all $x,y\in\mathbb{N}_0$ with $x>y$.
2022 Philippine MO, 8
The set $S = \{1, 2, \dots, 2022\}$ is to be partitioned into $n$ disjoint subsets $S_1, S_2, \dots, S_n$ such that for each $i \in \{1, 2, \dots, n\}$, exactly one of the following statements is true:
(a) For all $x, y \in S_i$, with $x \neq y, \gcd(x, y) > 1.$
(b) For all $x, y \in S_i$, with $x \neq y, \gcd(x, y) = 1.$
Find the smallest value of $n$ for which this is possible.
2016 Bosnia And Herzegovina - Regional Olympiad, 2
Does there exist a right angled triangle, which hypotenuse is $2016^{2017}$ and two other sides positive integers.
1996 Israel National Olympiad, 7
Find all positive integers $a,b,c$ such that $$\begin{cases} a^2 = 4(b+c) \\ a^3 -2b^3 -4c^3 =\frac12 abc \end {cases}$$
2020 Nigerian MO round 3, #4
let $p$and $q=p+2$ be twin primes. consider the diophantine equation $(+)$ given by
$n!+pq^2=(mp)^2$ $m\geq1$, $n\geq1$
i. if $m=p$,find the value of $p$.
ii. how many solution quadruple $(p,q,m,n)$ does $(+)$ have ?
2016 Postal Coaching, 1
Let $n$ be an odd positive integer such that $\varphi (n)$ and $\varphi (n+1)$ are both powers of $2$ (here $\varphi(n)$ denotes Euler’s totient function). Prove that $n+1$ is a power of $2$ or $n = 5$.
2023 IFYM, Sozopol, 3
Let $n \geq 2$ be an integer such that $6^n + 11^n$ is divisible by $n$. Prove that $n^{100} + 6^n + 11^n$ is divisible by $17n$ and not divisible by $289n$.
1976 IMO Longlists, 10
Show that the reciprocal of any number of the form $2(m^2+m+1)$, where $m$ is a positive integer, can be represented as a sum of consecutive terms in the sequence $(a_j)_{j=1}^{\infty}$
\[ a_j = \frac{1}{j(j + 1)(j + 2)}\]
2021 Polish Junior MO Finals, 5
Natural numbers $a$, $b$ are written in decimal using the same digits (i.e. every digit from 0 to 9 appears the same number of times in $a$ and in $b$). Prove that if $a+b=10^{1000}$ then both numbers $a$ and $b$ are divisible by $10$.
2015 Baltic Way, 16
Denote by $P(n)$ the greatest prime divisor of $n$. Find all integers $n\geq 2$ for which \[P(n)+\lfloor\sqrt{n}\rfloor=P(n+1)+\lfloor\sqrt{n+1}\rfloor\]
2022 BMT, 18
Nir finds integers $a_0, a_1, ... , a_{208}$ such that $$(x + 2)^{208} = a_0x^0 + a_1x^1 + a_2x^2 +... + a_{208}x^{208}.$$ Let $S$ be the sum of all an such that $n -3$ is divisible by $5$. Compute the remainder when $S$ is divided by $103$.
2011 Iran MO (3rd Round), 5
Suppose that $k$ is a natural number. Prove that there exists a prime number in $\mathbb Z_{[i]}$ such that every other prime number in $\mathbb Z_{[i]}$ has a distance at least $k$ with it.
1998 Singapore Team Selection Test, 3
An infinite arithmetic progression whose terms are positive integers contains the square of an integer and the cube of an integer. Show that it contains the sixth power of an integer.