This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2009 Switzerland - Final Round, 2

A [i]palindrome [/i] is a natural number that works in the decimal system forwards and backwards read is the same size (e.g. $1129211$ or $7337$). Determine all pairs $(m, n)$ of natural numbers, such that $$(\underbrace{11... 11}_{m}) \cdot (\underbrace{11... 11}_{n})$$ is a palindrome.

2018 Saudi Arabia IMO TST, 3

Two sets of positive integers $A, B$ are called [i]connected [/i] if they are not empty and for all $a \in A, b \in B$, number $ab + 1$ is a perfect square. i) Given $A =\{1, 2,3, 4\}$. Prove that there does not exist any set $B$ such that $A, B$ are connected. ii) Suppose that $A, B$ are connected with $|A|,|B| \ge 2$. For any $a_1 > a_2 \in A$ and $b_1 > b_2 \in B$, prove that $a_1b_1 > 13a_2b_2$.

2007 QEDMO 4th, 4

Prove that there is no positive integer $n>1$ such that $n\mid2^{n} -1.$

2005 India National Olympiad, 2

Let $\alpha$ and $\beta$ be positive integers such that $\dfrac{43}{197} < \dfrac{ \alpha }{ \beta } < \dfrac{17}{77}$. Find the minimum possible value of $\beta$.

1993 Bulgaria National Olympiad, 4

Find all natural numbers $n > 1$ for which there exists such natural numbers $a_1,a_2,...,a_n$ for which the numbers $\{a_i +a_j | 1 \le i \le j \le n \}$ form a full system modulo $\frac{n(n+1)}{2}$.

1977 Germany Team Selection Test, 3

Let $a_{1}, \ldots, a_{n}$ be an infinite sequence of strictly positive integers, so that $a_{k} < a_{k+1}$ for any $k.$ Prove that there exists an infinity of terms $ a_{m},$ which can be written like $a_m = x \cdot a_p + y \cdot a_q$ with $x,y$ strictly positive integers and $p \neq q.$

2018 Ecuador NMO (OMEC), 2

During his excursion to the historical park, Pepito set out to collect stones whose weight in kilograms is a power of two. Once the first stone has been collected, Pepito only collects stones strictly heavier than the first. At the end of the excursion, her partner Ana chooses a positive integer $K \ge 2$ and challenges Pepito to divide the stones into $K$ groups of equal weight. a) Can Pepito meet the challenge if all the stones he collected have different weights? b) Can Pepito meet the challenge if some collected stones are allowed to have equal weight?

2016 Latvia National Olympiad, 1

Given positive integers $x$ and $y$ such that $xy^2$ is a perfect cube, prove that $x^2y$ is also a perfect cube.

2013 Indonesia Juniors, day 1

p1. It is known that $f$ is a function such that $f(x)+2f\left(\frac{1}{x}\right)=3x$ for every $x\ne 0$. Find the value of $x$ that satisfies $f(x) = f(-x)$. p2. It is known that ABC is an acute triangle whose vertices lie at circle centered at point $O$. Point $P$ lies on side $BC$ so that $AP$ is the altitude of triangle ABC. If $\angle ABC + 30^o \le \angle ACB$, prove that $\angle COP + \angle CAB < 90^o$. p3. Find all natural numbers $a, b$, and $c$ that are greater than $1$ and different, and fulfills the property that $abc$ divides evenly $bc + ac + ab + 2$. p4. Let $A, B$, and $ P$ be the nails planted on the board $ABP$ . The length of $AP = a$ units and $BP = b$ units. The board $ABP$ is placed on the paths $x_1x_2$ and $y_1y_2$ so that $A$ only moves freely along path $x_1x_2$ and only moves freely along the path $y_1y_2$ as in following image. Let $x$ be the distance from point $P$ to the path $y_1y_2$ and y is with respect to the path $x_1x_2$ . Show that the equation for the path of the point $P$ is $\frac{x^2}{b^2}+\frac{y^2}{a^2}=1$. [img]https://cdn.artofproblemsolving.com/attachments/4/6/d88c337370e8c3bc5a1833bc9588d3fb047bd0.png[/img] p5. There are three boxes $A, B$, and $C$ each containing $3$ colored white balls and $2$ red balls. Next, take three ball with the following rules: 1. Step 1 Take one ball from box $A$. 2. Step 2 $\bullet$ If the ball drawn from box $A$ in step 1 is white, then the ball is put into box $B$. Next from box $B$ one ball is drawn, if it is a white ball, then the ball is put into box $C$, whereas if the one drawn is red ball, then the ball is put in box $A$. $\bullet$ If the ball drawn from box $A$ in step 1 is red, then the ball is put into box $C$. Next from box $C$ one ball is taken. If what is drawn is a white ball then the ball is put into box $A$, whereas if the ball drawn is red, the ball is placed in box $B$. 3. Step 3 Take one ball each from squares $A, B$, and $C$. What is the probability that all the balls drawn in step 3 are colored red?

LMT Guts Rounds, 2019 F

[u]Round 5[/u] [b]p13.[/b] Determine the number of different circular bracelets can be made with $7$ beads, all either colored red or black. [b]p14.[/b] The product of $260$ and $n$ is a perfect square. The $2020$th least possible positive integer value of $n$ can be written as$ p^{e_1}_1 \cdot p^{e_2}_2\cdot p^{e_3}_3\cdot p^{e_4}_4$ . Find the sum $p_1 +p_2 +p_3 +p_4 +e_1 +e_2 +_e3 +e_4$. [b]p15.[/b] Let $B$ and $C$ be points along the circumference of circle $\omega$. Let $A$ be the intersection of the tangents at $B$ and $C$ and let $D \ne A$ be on $\overrightarrow{AC}$ such that $AC =CD = 6$. Given $\angle BAC = 60^o$, find the distance from point $D$ to the center of $\omega$. [u]Round 6[/u] [b]p16.[/b] Evaluate $\sqrt{2+\sqrt{2+\sqrt{2+...}}}$. [b]p17.[/b] Let $n(A)$ be the number of elements of set $A$ and $||A||$ be the number of subsets of set $A$. Given that $||A||+2||B|| = 2^{2020}$, find the value of $n(B)$. [b]p18.[/b] $a$ and $b$ are positive integers and $8^a9^b$ has $578$ factors. Find $ab$. [u]Round 7[/u] [b]p19.[/b] Determine the probability that a randomly chosen positive integer is relatively prime to $2019$. [b]p20.[/b] A $3$-by-$3$ grid of squares is to be numbered with the digits $1$ through $9$ such that each number is used once and no two even-numbered squares are adjacent. Determine the number of ways to number the grid. [b]p21.[/b] In $\vartriangle ABC$, point $D$ is on $AC$ so that $\frac{AD}{DC}= \frac{1}{13}$ . Let point $E$ be on $BC$, and let $F$ be the intersection of $AE$ and $BD$. If $\frac{DF}{FB}=\frac{2}{7}$ and the area of $\vartriangle DBC$ is $26$, compute the area of $\vartriangle F AB$. [u]Round 8[/u] [b]p22.[/b] A quarter circle with radius $1$ is located on a line with its horizontal base on the line and to the left of the vertical side. It is then rolled to the right until it reaches its original orientation. Determine the distance traveled by the center of the quarter circle. [b]p23.[/b] In $1734$, mathematician Leonhard Euler proved that $\frac{\pi^2}{6}=\frac11+\frac14+\frac19+\frac{1}{16}+...$. With this in mind, calculate the value of $\frac11-\frac14+\frac19-\frac{1}{16}+...$ (the series obtained by negating every other term of the original series). [b]p24.[/b] Billy the biker is competing in a bike show where he can do a variety of tricks. He knows that one trick is worth $2$ points, $1$ trick is worth $3$ points, and 1 is worth $5$ points, but he doesn’t remember which trick is worth what amount. When it’s Billy’s turn to perform, he does $6$ tricks, randomly choosing which trick to do. Compute the sum of all the possible values of points that Billy could receive in total. PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h3166016p28809598]here [/url] and 9-12 [url=https://artofproblemsolving.com/community/c3h3166115p28810631]here[/url].Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2021 Indonesia TST, N

Let $n$ be a positive integer. Prove that $$\gcd(\underbrace{11\dots 1}_{n \text{times}},n)\mid 1+10^k+10^{2k}+\dots+10^{(n-1)k}$$ for all positive integer $k$.

1930 Eotvos Mathematical Competition, 1

How many five-digit multiples of 3 end with the digit 6 ?

2003 Tournament Of Towns, 3

Find all positive integers $k$ such that there exist two positive integers $m$ and $n$ satisfying \[m(m + k) = n(n + 1).\]

2017 Romania National Olympiad, 2

Show that for every integer $n \ge 3$ there exists positive integers $x_1, x_2, . . . , x_n$, pairwise different, so that $\{2, n\} \subset \{x_1, x_2, . . . , x_n\}$ and $$\frac{1}{x_1}+\frac{1}{x_2}+.. +\frac{1}{x_n}= 1.$$

1993 Polish MO Finals, 3

Denote $g(k)$ as the greatest odd divisor of $k$. Put $f(k) = \dfrac{k}{2} + \dfrac{k}{g(k)}$ for $k$ even, and $2^{(k+1)/2}$ for $k$ odd. Define the sequence $x_1, x_2, x_3, ...$ by $x_1 = 1$, $x_{n+1} = f(x_n)$. Find $n$ such that $x_n = 800$.

1993 India National Olympiad, 8

Let $f$ be a bijective function from $A = \{ 1, 2, \ldots, n \}$ to itself. Show that there is a positive integer $M$ such that $f^{M}(i) = f(i)$ for each $i$ in $A$, where $f^{M}$ denotes the composition $f \circ f \circ \cdots \circ f$ $M$ times.

2020 Argentina National Olympiad, 1

For every positive integer $n$, let $S (n)$ be the sum of the digits of $n$. Find, if any, a $171$-digit positive integer $n$ such that $7$ divides $S (n)$ and $7$ divides $S (n + 1)$.

2014 India National Olympiad, 3

Let $a,b$ be natural numbers with $ab>2$. Suppose that the sum of their greatest common divisor and least common multiple is divisble by $a+b$. Prove that the quotient is at most $\frac{a+b}{4}$. When is this quotient exactly equal to $\frac{a+b}{4}$

2016 Junior Regional Olympiad - FBH, 4

In set of positive integers solve the equation $$x^3+x^2y+xy^2+y^3=8(x^2+xy+y^2+1)$$

2011 Belarus Team Selection Test, 1

Is it possible to arrange the numbers $1,2,...,2011$ over the circle in some order so that among any $25$ successive numbers at least $8$ numbers are multiplies of $5$ or $7$ (or both $5$ and $7$) ? I. Gorodnin

2013 NIMO Summer Contest, 2

If $\frac{2+4+6}{1+3+5}-\frac{1+3+5}{2+4+6} = \frac{m}{n}$ for relatively prime integers $m$ and $n$, compute $100m+n$. [i]Proposed by Evan Chen[/i]

2020 Kazakhstan National Olympiad, 1

Find all pairs $ (m, n) $ of natural numbers such that $ n ^ 4 \ | \ 2m ^ 5 - 1 $ and $ m ^ 4 \ | \ 2n ^ 5 + 1 $.

2022 Dutch BxMO TST, 3

Find all pairs $(p, q)$ of prime numbers such that $$p(p^2 -p - 1) = q(2q + 3).$$

2014 Iran Team Selection Test, 3

prove for all $k> 1$ equation $(x+1)(x+2)...(x+k)=y^{2}$ has finite solutions.

2019 AIME Problems, 2

Jenn randomly chooses a number $J$ from $1, 2, 3,\ldots, 19, 20$. Bela then randomly chooses a number $B$ from $1, 2, 3,\ldots, 19, 20$ distinct from $J$. The value of $B - J$ is at least $2$ with a probability that can be expressed in the form $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m+n$.