This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2014 Danube Mathematical Competition, 3

Given any integer $n \ge 2$, show that there exists a set of $n$ pairwise coprime composite integers in arithmetic progression.

2020 BMT Fall, 10

Let $\psi (n)$ be the number of integers $0 \le r < n$ such that there exists an integer $x$ that satis es $x^2 + x \equiv r$ (mod $n$). Find the sum of all distinct prime factors of $$\sum^4_{i=0}\sum^4_{j=0} \psi(3^i5^j).$$

1953 Moscow Mathematical Olympiad, 250

Somebody wrote $1953$ digits on a circle. The $1953$-digit number obtained by reading these figures clockwise, beginning at a certain point, is divisible by $27$. Prove that if one begins reading the figures at any other place, one gets another $1953$-digit number also divisible by $27$.

1980 IMO, 19

Find all pairs of solutions $(x,y)$: \[ x^3 + x^2y + xy^2 + y^3 = 8(x^2 + xy + y^2 + 1). \]

2017 IMO Shortlist, N6

Find the smallest positive integer $n$ or show no such $n$ exists, with the following property: there are infinitely many distinct $n$-tuples of positive rational numbers $(a_1, a_2, \ldots, a_n)$ such that both $$a_1+a_2+\dots +a_n \quad \text{and} \quad \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$$ are integers.

1946 Moscow Mathematical Olympiad, 108

Find a four-digit number such that the remainders after its division by $131$ and $132$ are $112$ and $98$, respectively.

2016 IMO Shortlist, N7

Let $P=A_1A_2\cdots A_k$ be a convex polygon in the plane. The vertices $A_1, A_2, \ldots, A_k$ have integral coordinates and lie on a circle. Let $S$ be the area of $P$. An odd positive integer $n$ is given such that the squares of the side lengths of $P$ are integers divisible by $n$. Prove that $2S$ is an integer divisible by $n$.

2005 Iran MO (3rd Round), 2

Let $a\in\mathbb N$ and $m=a^2+a+1$. Find the number of $0\leq x\leq m$ that:\[x^3\equiv1(\mbox{mod}\ m)\]

DMM Individual Rounds, 1999

[b]p1.[/b] Function $f$ is defined by $f (x) = ax+b$ for some real values $a, b > 0$. If $f (f (x)) = 9x + 5$ for all $x$, find $b$. [b]p2.[/b] At some point during a game, Will Avery has made $1/3$ of his shots. When he shoots once and makes a basket, his average increases to $2/5$. Find his average (expressed as a fraction) after a second additional basket. [b]p3.[/b] A dealer has a deck of $1999$ cards. He takes the top card off and “ducks” it, that is, places it on the bottom of the deck. He deals the second card onto the table. He ducks the third card, deals the fourth card, ducks the fifth card, deals the sixth card, and so forth, continuing until he has only one card left; he then ducks the last card with itself and deals it. Some of the cards (like the second and fourth cards) are not ducked at all before being dealt, while others are ducked multiple times. The question is: what is the average number of ducks per card? [b]p4.[/b] Point $P$ lies outside circle $O$. Perpendicular lines $\ell$ and m intersect at $P$. Line $\ell$ is tangent to circle $O$ at a point $6$ units from $P$. Line $m$ crosses circle $O$ at a point $4$ units from $P$. Find the radius of circle $O$. [b]p5.[/b] Define $f(n)$ by $$f(n) = \begin{cases} n/2 \,\,\,\text{if} \,\,\, n\,\,\,is\,\,\, even \\ (n + 1023)/2\,\,\, \text{if} \,\,\, n\,\,\,is\,\,\, odd \end{cases}$$ Find the least positive integer $n$ such that $f(f(f(f(f(n))))) = n.$ [b]p6.[/b] Write $\sqrt{10001}$ to the sixth decimal place, rounding down. [b]p7.[/b] Define $(a_n)$ recursively by $a_1 = 1$, $a_n = 20 \cos (a_{n-1}^o)$. As $n$ tends to infinity, $(a_n)$ tends to $18.9195...$. Define $(b_n)$ recursively by $b_1 = 1$, $b_n =\sqrt{800 + 800 \cos (b_{n-1}^o)}$. As $n$ tends to infinity, $(b_n)$ tends to $x$. Calculate $x$ to three decimal places. [b]p8.[/b] Let $mod_d (k)$ be the remainder of $k$ when divided by $d$. Find the number of positive integers $n$ satisfying $$mod_n(1999) = n^2 - 89n + 1999$$ [b]p9.[/b] Let $f(x) = x^3 + x$. Compute $$\sum^{10}_{k=1} \frac{1}{1 + f^{-1}(k - 1)^2 + f^{-1}(k - 1)f^{-1}(k) + f^{-1}(k)^2}$$ ($f^{-1}$ is the inverse of $f$: $f (f^{-1}1 (x)) = f^{-1}1 (f (x)) = x$ for all $x$.) PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

MOAA Team Rounds, 2022.10

Three integers $A, B, C$ are written on a whiteboard. Every move, Mr. Doba can either subtract $1$ from all numbers on the board, or choose two numbers on the board and subtract $1$ from both of them whilst leaving the third untouched. For how many ordered triples $(A, B, C)$ with $1 \le A < B < C\le 20$ is it possible for Mr. Doba to turn all three of the numbers on the board to $0$?

2021 Princeton University Math Competition, A4 / B5

Let $f(n) = \sum_{gcd(k,n)=1,1\le k\le n}k^3$ . If the prime factorization of $f(2020)$ can be written as $p^{e_1}_1 p^{e_2}_2 ... p^{e_k}_k$, find $\sum^k_{i=1} p_ie_i$.

1997 Singapore Team Selection Test, 2

Let $a_n$ be the number of n-digit integers formed by $1, 2$ and $3$ which do not contain any consecutive $1$’s. Prove that $a_n$ is equal to $$\left( \frac12 + \frac{1}{\sqrt3}\right)(\sqrt{3} + 1)^n$$ rounded off to the nearest integer.

1990 IMO Shortlist, 23

Determine all integers $ n > 1$ such that \[ \frac {2^n \plus{} 1}{n^2} \] is an integer.

2023 Purple Comet Problems, 12

Find the greatest prime that divides $$1^2 - 2^2 + 3^2 - 4^2 +...- 98^2 + 99^2.$$

2008 Ukraine Team Selection Test, 6

Prove that there exist infinitely many pairs $ (a, b)$ of natural numbers not equal to $ 1$ such that $ b^b \plus{}a$ is divisible by $ a^a \plus{}b$.

1955 Moscow Mathematical Olympiad, 292

Let $a, b, n$ be positive integers, $b < 10$ and $2^n = 10a + b$. Prove that if $n > 3$, then $6$ divides $ab$.

2022 South East Mathematical Olympiad, 5

Let $a,b,c,d$ be non-negative integers. $(1)$ If $a^2+b^2-cd^2=2022 ,$ find the minimum of $a+b+c+d;$ $(1)$ If $a^2-b^2+cd^2=2022 ,$ find the minimum of $a+b+c+d .$

2025 Kyiv City MO Round 1, Problem 1

Find all triples of positive integers \( a, b, c \) that satisfy the equation: \[ a + \frac{1}{b + \frac{1}{c}} = 20.25. \]

2015 Iran Team Selection Test, 4

$n$ is a fixed natural number. Find the least $k$ such that for every set $A$ of $k$ natural numbers, there exists a subset of $A$ with an even number of elements which the sum of it's members is divisible by $n$.

2015 BmMT, Team Round

[b]p1.[/b] Let $f$ be a function such that $f(x + y) = f(x) + f(y)$ for all $x$ and $y$. Assume $f(5) = 9$. Compute $f(2015)$. [b]p2.[/b] There are six cards, with the numbers $2, 2, 4, 4, 6, 6$ on them. If you pick three cards at random, what is the probability that you can make a triangles whose side lengths are the chosen numbers? [b]p3. [/b]A train travels from Berkeley to San Francisco under a tunnel of length $10$ kilometers, and then returns to Berkeley using a bridge of length $7$ kilometers. If the train travels at $30$ km/hr underwater and 60 km/hr above water, what is the train’s average speed in km/hr on the round trip? [b]p4.[/b] Given a string consisting of the characters A, C, G, U, its reverse complement is the string obtained by first reversing the string and then replacing A’s with U’s, C’s with G’s, G’s with C’s, and U’s with A’s. For example, the reverse complement of UAGCAC is GUGCUA. A string is a palindrome if it’s the same as its reverse. A string is called self-conjugate if it’s the same as its reverse complement. For example, UAGGAU is a palindrome and UAGCUA is self-conjugate. How many six letter strings with just the characters A, C, G (no U’s) are either palindromes or self-conjugate? [b]p5.[/b] A scooter has $2$ wheels, a chair has $6$ wheels, and a spaceship has $11$ wheels. If there are $10$ of these objects, with a total of $50$ wheels, how many chairs are there? [b]p6.[/b] How many proper subsets of $\{1, 2, 3, 4, 5, 6\}$ are there such that the sum of the elements in the subset equal twice a number in the subset? [b]p7.[/b] A circle and square share the same center and area. The circle has radius $1$ and intersects the square on one side at points $A$ and $B$. What is the length of $\overline{AB}$ ? [b]p8. [/b]Inside a circle, chords $AB$ and $CD$ intersect at $P$ in right angles. Given that $AP = 6$, $BP = 12$ and $CD = 15$, find the radius of the circle. [b]p9.[/b] Steven makes nonstandard checkerboards that have $29$ squares on each side. The checkerboards have a black square in every corner and alternate red and black squares along every row and column. How many black squares are there on such a checkerboard? [b]p10.[/b] John is organizing a race around a circular track and wants to put $3$ water stations at $9$ possible spots around the track. He doesn’t want any $2$ water stations to be next to each other because that would be inefficient. How many ways are possible? [b]p11.[/b] In square $ABCD$, point $E$ is chosen such that $CDE$ is an equilateral triangle. Extend $CE$ and $DE$ to $F$ and $G$ on $AB$. Find the ratio of the area of $\vartriangle EFG$ to the area of $\vartriangle CDE$. [b]p12.[/b] Let $S$ be the number of integers from $2$ to $8462$ (inclusive) which does not contain the digit $1,3,5,7,9$. What is $S$? [b]p13.[/b] Let x, y be non zero solutions to $x^2 + xy + y^2 = 0$. Find $\frac{x^{2016} + (xy)^{1008} + y^{2016}}{(x + y)^{2016}}$ . [b]p14.[/b] A chess contest is held among $10$ players in a single round (each of two players will have a match). The winner of each game earns $2$ points while loser earns none, and each of the two players will get $1$ point for a draw. After the contest, none of the $10$ players gets the same score, and the player of the second place gets a score that equals to $4/5$ of the sum of the last $5$ players. What is the score of the second-place player? [b]p15.[/b] Consider the sequence of positive integers generated by the following formula $a_1 = 3$, $a_{n+1} = a_n + a^2_n$ for $n = 2, 3, ...$ What is the tens digit of $a_{1007}$? [b]p16.[/b] Let $(x, y, z)$ be integer solutions to the following system of equations $x^2z + y^2z + 4xy = 48$ $x^2 + y^2 + xyz = 24$ Find $\sum x + y + z$ where the sum runs over all possible $(x, y, z)$. [b]p17.[/b] Given that $x + y = a$ and $xy = b$ and $1 \le a, b \le 50$, what is the sum of all a such that $x^4 + y^4 - 2x^2y^2$ is a prime squared? [b]p18.[/b] In $\vartriangle ABC$, $M$ is the midpoint of $\overline{AB}$, point $N$ is on side $\overline{BC}$. Line segments $\overline{AN}$ and $\overline{CM}$ intersect at $O$. If $AO = 12$, $CO = 6$, and $ON = 4$, what is the length of $OM$? [b]p19.[/b] Consider the following linear system of equations. $1 + a + b + c + d = 1$ $16 + 8a + 4b + 2c + d = 2$ $81 + 27a + 9b + 3c + d = 3$ $256 + 64a + 16b + 4c + d = 4$ Find $a - b + c - d$. [b]p20.[/b] Consider flipping a fair coin $ 8$ times. How many sequences of coin flips are there such that the string HHH never occurs? PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2020 Greece National Olympiad, 4

Find all values of the positive integer $k$ that has the property: There are no positive integers $a,b$ such that the expression $A(k,a,b)=\frac{a+b}{a^2+k^2b^2-k^2ab}$ is a composite positive number.

2016 May Olympiad, 3

We say that a positive integer is [i]quad-divi[/i] if it is divisible by the sum of the squares of its digits, and also none of its digits is equal to zero. a) Find a quad-divi number such that the sum of its digits is $24$. b) Find a quad-divi number such that the sum of its digits is $1001$.

LMT Guts Rounds, 2023 F

[u]Part 6 [/u] [b]p16.[/b] Le[b][/b]t $p(x)$ and $q(x)$ be polynomials with integer coefficients satisfying $p(1) = q(1)$. Find the greatest integer $n$ such that $\frac{p(2023)-q(2023)}{n}$ is an integer no matter what $p(x)$ and $q(x)$ are. [b]p17.[/b] Find all ordered pairs of integers $(m,n)$ that satisfy $n^3 +m^3 +231 = n^2m^2 +nm.$ [b]p18.[/b] Ben rolls the frustum-shaped piece of candy (shown below) in such a way that the lateral area is always in contact with the table. He rolls the candy until it returns to its original position and orientation. Given that $AB = 4$ and $BD =CD = 3$, find the length of the path traced by $A$. [u]Part 7 [/u] [b]p19.[/b] In their science class, Adam, Chris, Eddie and Sam are independently and randomly assigned an integer grade between $70$ and $79$ inclusive. Given that they each have a distinct grade, what is the expected value of the maximum grade among their four grades? [b]p20.[/b] Let $ABCD$ be a regular tetrahedron with side length $2$. Let point $E$ be the foot of the perpendicular from $D$ to the plane containing $\vartriangle ABC$. There exist two distinct spheres $\omega_1$ and $\omega_2$, centered at points $O_1$ and $O_2$ respectively, such that both $O_1$ and $O_2$ lie on $\overrightarrow{DE}$ and both spheres are tangent to all four of the planes $ABC$, $BCD$, $CDA$, and $DAB$. Find the sum of the volumes of $\omega_1$ and $\omega_2$. [b]p21.[/b] Evaluate $$\sum^{\infty}_{i=0}\sum^{\infty}_{j=0}\sum^{\infty}_{k=0} \frac{1}{(i + j +k +1)2^{i+j+k+1}}.$$ [u]Part 8 [/u] [b]p22.[/b] In $\vartriangle ABC$, let $I_A$, $I_B$ , and $I_C$ denote the $A$, $B$, and $C$-excenters, respectively. Given that $AB = 15$, $BC = 14$ and $C A = 13$, find $\frac{[I_A I_B I_C ]}{[ABC]}$ . [b]p23.[/b] The polynomial $x +2x^2 +3x^3 +4x^4 +5x^5 +6x^6 +5x^7 +4x^8 +3x^9 +2x^{10} +x^{11}$ has distinct complex roots $z_1, z_2, ..., z_n$. Find $$\sum^n_{k=1} |R(z^2n))|+|I(z^2n)|,$$ where $R(z)$ and $I(z)$ indicate the real and imaginary parts of $z$, respectively. Express your answer in simplest radical form. [b]p24.[/b] Given that $\sin 33^o +2\sin 161^o \cdot \sin 38^o = \sin n^o$ , compute the least positive integer value of $n$. [u]Part 9[/u] [b]p25.[/b] Submit a prime between $2$ and $2023$, inclusive. If you don’t, or if you submit the same number as another team’s submission, you will receive $0$ points. Otherwise, your score will be $\min \left(30, \lfloor 4 \cdot ln(x) \rfloor \right)$, where $x$ is the positive difference between your submission and the closest valid submission made by another team. [b]p26.[/b] Sam, Derek, Jacob, andMuztaba are eating a very large pizza with $2023$ slices. Due to dietary preferences, Sam will only eat an even number of slices, Derek will only eat a multiple of $3$ slices, Jacob will only eat a multiple of $5$ slices, andMuztaba will only eat a multiple of $7$ slices. How many ways are there for Sam, Derek, Jacob, andMuztaba to eat the pizza, given that all slices are identical and order of slices eaten is irrelevant? If your answer is $A$ and the correct answer is $C$, the number of points you receive will be: irrelevant? If your answer is $A$ and the correct answer is $C$, the number of points you receive will be: $$\max \left( 0, \left\lfloor 30 \left( 1-2\sqrt{\frac{|A-C|}{C}}\right)\right\rfloor \right)$$ [b]p27.[/b] Let $ \Omega_(k)$ denote the number of perfect square divisors of $k$. Compute $$\sum^{10000}_{k=1} \Omega_(k).$$ If your answer is $A$ and the correct answer is $C$, the number of points you recieve will be $$\max \left( 0, \left\lfloor 30 \left( 1-4\sqrt{\frac{|A-C|}{C}}\right)\right\rfloor \right)$$ PS. You should use hide for answers. Rounds 1-5 have been posted [url=https://artofproblemsolving.com/community/c3h3267911p30056982]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2022 Mexican Girls' Contest, 1

Determine all finite nonempty sets $S$ of positive integers satisfying \[ {i+j\over (i,j)}\qquad\mbox{is an element of S for all i,j in S}, \] where $(i,j)$ is the greatest common divisor of $i$ and $j$.

2018 Junior Balkan Team Selection Tests - Romania, 1

Determine the positive integers $n \ge 3$ such that, for every integer $m \ge 0$, there exist integers $a_1, a_2,..., a_n$ such that $a_1 + a_2 +...+ a_n = 0$ and $a_1a_2 + a_2a_3 + ...+a_{n-1}a_n + a_na_1 = -m$ Alexandru Mihalcu