This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2020 HK IMO Preliminary Selection Contest, 20

Consider the Fibonacci sequence $1$, $1$, $2$, $3$, $5$, $8$, $13$, ... What are the last three digits (from left to right) of the $2020$th term?

1998 Greece National Olympiad, 1

Prove that for any integer $n>3$ there exist infinitely many non-constant arithmetic progressions of length $n-1$ whose terms are positive integers whose product is a perfect $n$-th power.

2019 LIMIT Category B, Problem 6

If $n$ is a positive integer such that $8n+1$ is a perfect square, then $\textbf{(A)}~n\text{ must be odd}$ $\textbf{(B)}~n\text{ cannot be a perfect square}$ $\textbf{(C)}~n\text{ cannot be a perfect square}$ $\textbf{(D)}~\text{None of the above}$

2023 Greece National Olympiad, 2

Find all positive integers $N$ that are perfect squares and their decimal representation consists of $n$ digits equal to 2 and one digit equal to 5, where $n$ takes positive integer values.

2013 Bosnia And Herzegovina - Regional Olympiad, 2

If $x$ and $y$ are real numbers, prove that $\frac{4x^2+1}{y^2+2}$ is not integer

2018 Stanford Mathematics Tournament, 3

Show that if $ A$ is a shape in the Cartesian coordinate plane with area greater than $ 1$, then there are distinct points $(a, b)$, $(c, d)$ in $A$ where $a - c = 2x + 5y$ and $b - d = x + 3y$ where $x, y$ are integers.

2022 Junior Macedonian Mathematical Olympiad, P1

Determine all positive integers $a$, $b$ and $c$ which satisfy the equation $$a^2+b^2+1=c!.$$ [i]Proposed by Nikola Velov[/i]

1992 IMO Longlists, 14

Integers $a_1, a_2, . . . , a_n$ satisfy $|a_k| = 1$ and \[ \sum_{k=1}^{n} a_ka_{k+1}a_{k+2}a_{k+3} = 2,\] where $a_{n+j} = a_j$. Prove that $n \neq 1992.$

1986 IMO Longlists, 58

Find four positive integers each not exceeding $70000$ and each having more than $100$ divisors.

2014 All-Russian Olympiad, 1

Define $m(n)$ to be the greatest proper natural divisor of $n\in \mathbb{N}$. Find all $n \in \mathbb{N} $ such that $n+m(n) $ is a power of $10$. [i]N. Agakhanov[/i]

2017 Cono Sur Olympiad, 6

The infinite sequence $a_1,a_2,a_3,\ldots$ of positive integers is defined as follows: $a_1=1$, and for each $n \ge 2$, $a_n$ is the smallest positive integer, distinct from $a_1,a_2, \ldots , a_{n-1}$ such that: $$\sqrt{a_n+\sqrt{a_{n-1}+\ldots+\sqrt{a_2+\sqrt{a_1}}}}$$ is an integer. Prove that all positive integers appear on the sequence $a_1,a_2,a_3,\ldots$

2024 Indonesia TST, 2

For positive integers $n$ and $k \geq 2$, define $E_k(n)$ as the greatest exponent $r$ such that $k^r$ divides $n!$. Prove that there are infinitely many $n$ such that $E_{10}(n) > E_9(n)$ and infinitely many $m$ such that $E_{10}(m) < E_9(m)$.

2025 China Team Selection Test, 19

Let $\left \{ x_n \right \} _{n\ge 1}$ and $\left \{ y_n \right \} _{n\ge 1}$ be two infinite sequences of integers. Prove that there exists an infinite sequence of integers $\left \{ z_n \right \} _{n\ge 1}$ such that for any positive integer \( n \), the following holds: \[ \sum_{k|n} k \cdot z_k^{\frac{n}{k}} = \left( \sum_{k|n} k \cdot x_k^{\frac{n}{k}} \right) \cdot \left( \sum_{k|n} k \cdot y_k^{\frac{n}{k}} \right). \]

2011 Iran MO (3rd Round), 4

Suppose that $n$ is a natural number and $n$ is not divisible by $3$. Prove that $(n^{2n}+n^n+n+1)^{2n}+(n^{2n}+n^n+n+1)^n+1$ has at least $2d(n)$ distinct prime factors where $d(n)$ is the number of positive divisors of $n$. [i]proposed by Mahyar Sefidgaran[/i]

2022 IMO Shortlist, N4

Find all triples $(a,b,p)$ of positive integers with $p$ prime and \[ a^p=b!+p. \]

2014 Contests, 1

Find all integers $\,a,b,c\,$ with $\,1<a<b<c\,$ such that \[ (a-1)(b-1)(c-1) \] is a divisor of $abc-1.$

1993 Nordic, 3

Find all solutions of the system of equations $\begin{cases} s(x) + s(y) = x \\ x + y + s(z) = z \\ s(x) + s(y) + s(z) = y - 4 \end{cases}$ where $x, y$, and $z$ are positive integers, and $s(x), s(y)$, and $s(z)$ are the numbers of digits in the decimal representations of $x, y$, and $z$, respectively.

1997 Baltic Way, 9

The worlds in the Worlds’ Sphere are numbered $1,2,3,\ldots $ and connected so that for any integer $n\ge 1$, Gandalf the Wizard can move in both directions between any worlds with numbers $n,2n$ and $3n+1$. Starting his travel from an arbitrary world, can Gandalf reach every other world?

2015 Junior Regional Olympiad - FBH, 2

One day students in school organised a exchange between them such that : $11$ strawberries change for $14$ raspberries, $22$ cherries change for $21$ raspberries, $10$ cherries change for $3$ bananas and $5$ pears for $2$ bananas. How many pears has Amila to give to get $7$ strawberries

DMM Devil Rounds, 2017

[b]p1.[/b] Let $A = \{D,U,K,E\}$ and $B = \{M, A, T,H\}$. How many maps are there from $A$ to $B$? [b]p2.[/b] The product of two positive integers $x$ and $y$ is equal to $3$ more than their sum. Find the sum of all possible $x$. [b]p3.[/b] There is a bag with $1$ red ball and $1$ blue ball. Jung takes out a ball at random and replaces it with a red ball. Remy then draws a ball at random. Given that Remy drew a red ball, what is the probability that the ball Jung took was red? [b]p4.[/b] Let $ABCDE$ be a regular pentagon and let $AD$ intersect $BE$ at $P$. Find $\angle APB$. [b]p5.[/b] It is Justin and his $4\times 4\times 4$ cube again! Now he uses many colors to color all unit-cubes in a way such that two cubes on the same row or column must have different colors. What is the minimum number of colors that Justin needs in order to do so? [b]p6.[/b] $f(x)$ is a polynomial of degree $3$ where $f(1) = f(2) = f(3) = 4$ and $f(-1) = 52$. Determine $f(0)$. [b]p7.[/b] Mike and Cassie are partners for the Duke Problem Solving Team and they decide to meet between $1$ pm and $2$ pm. The one who arrives first will wait for the other for $10$ minutes, the lave. Assume they arrive at any time between $1$ pm and $2$ pm with uniform probability. Find the probability they meet. [b]p8.[/b] The remainder of $2x^3 - 6x^2 + 3x + 5$ divided by $(x - 2)^2$ has the form $ax + b$. Find $ab$. [b]p9.[/b] Find $m$ such that the decimal representation of m! ends with exactly $99$ zeros. [b]p10.[/b] Let $1000 \le n = \overline{DUKE} \le 9999$. be a positive integer whose digits $\overline{DUKE}$ satisfy the divisibility condition: $$1111 | \left( \overline{DUKE} + \overline{DU} \times \overline{KE} \right)$$ Determine the smallest possible value of $n$. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1989 Poland - Second Round, 5

Given a sequence $ (c_n) $ of natural numbers defined recursively: $ c_1 = 2 $, $ c_{n+1} = \left[ \frac{3}{2}c_n\right] $. Prove that there are infinitely many even numbers and infinitely many odd numbers among the terms of this sequence.

1991 French Mathematical Olympiad, Problem 4

Tags: set , number theory
Let $p$ be a nonnegative integer and let $n=2^p$. Consider all subsets $A$ of the set $\{1,2,\ldots,n\}$ with the property that, whenever $x\in A$, $2x\notin A$. Find the maximum number of elements that such a set $A$ can have.

2005 Germany Team Selection Test, 1

Find the smallest positive integer $n$ with the following property: For any integer $m$ with $0 < m < 2004$, there exists an integer $k$ such that \[\frac{m}{2004}<\frac{k}{n}<\frac{m+1}{2005}.\]

2006 USAMO, 5

A mathematical frog jumps along the number line. The frog starts at $1$, and jumps according to the following rule: if the frog is at integer $n$, then it can jump either to $n+1$ or to $n + 2^{m_n+1}$ where $2^{m_n}$ is the largest power of $2$ that is a factor of $n.$ Show that if $k \geq 2$ is a positive integer and $i$ is a nonnegative integer, then the minimum number of jumps needed to reach $2^ik$ is greater than the minimum number of jumps needed to reach $2^i.$

2017 Peru IMO TST, 14

For any positive integer $k$, denote the sum of digits of $k$ in its decimal representation by $S(k)$. Find all polynomials $P(x)$ with integer coefficients such that for any positive integer $n \geq 2016$, the integer $P(n)$ is positive and $$S(P(n)) = P(S(n)).$$ [i]Proposed by Warut Suksompong, Thailand[/i]