This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2000 Baltic Way, 13

Let $a_1,a_2 ,\ldots, a_n$ be an arithmetic progression of integers such that $i|a_i$ for $i=1, 2,\ldots ,n-1$ and $n\nmid a_n$. Prove that $n$ is a prime power.

2008 Hong Kong TST, 3

Show that the equation $ y^{37} \equal{} x^3 \plus{}11\pmod p$ is solvable for every prime $ p$, where $ p\le 100$.

2016 Philippine MO, 2

Prove that the arithmetic sequence $5, 11, 17, 23, 29, \ldots$ contains infinitely many primes.

2020 CHMMC Winter (2020-21), 2

Find the sum of all positive integers $x < 241$ such that both $x^{24} + x^{18} + x^{12} + x^6 + 1$ and $x^{20} + x^{10} + 1$ are multiples of $241$.

MMATHS Mathathon Rounds, 2017

[u]Round 5[/u] [b]p13.[/b] Points $A, B, C$, and $D$ lie in a plane with $AB = 6$, $BC = 5$, and $CD = 5$, and $AB$ is perpendicular to $BC$. Point E lies on line $AD$ such that $D \ne E$, $AE = 3$ and $CE = 5$. Find $DE$. [b]p14.[/b] How many ordered pairs of integers $(x,y)$ are solutions to $x^2y = 36 + y$? [b]p15.[/b] Chicken nuggets come in boxes of two sizes, $a$ nuggets per box and $b$ nuggets per box. We know that $899$ nuggets is the largest number of nuggets we cannot obtain with some combination of $a$-sized boxes and $b$-sized boxes. How many different pairs $(a, b)$ are there with $a < b$? [u]Round 6[/u] [b]p16.[/b] You are playing a game with coins with your friends Alice and Bob. When all three of you flip your respective coins, the majority side wins. For example, if Alice, Bob, and you flip Heads, Tails, Heads in that order, then you win. If Alice, Bob, and you flip Heads, Heads, Tails in that order, then you lose. Notice that more than one person will “win.” Alice and Bob design their coins as follows: a value $p$ is chosen randomly and uniformly between $0$ and $1$. Alice then makes a biased coin that lands on heads with probability $p$, and Bob makes a biased coin that lands on heads with probability $1 -p$. You design your own biased coin to maximize your chance of winning without knowing $p$. What is the probability that you win? [b]p17.[/b] There are $N$ distinct students, numbered from $1$ to $N$. Each student has exactly one hat: $y$ students have yellow hats, $b$ have blue hats, and $r$ have red hats, where $y + b + r = N$ and $y, b, r > 0$. The students stand in a line such that all the $r$ people with red hats stand in front of all the $b$ people with blue hats. Anyone wearing red is standing in front of everyone wearing blue. The $y$ people with yellow hats can stand anywhere in the line. The number of ways for the students to stand in a line is $2016$. What is $100y + 10b + r$? [b]p18.[/b] Let P be a point in rectangle $ABCD$ such that $\angle APC = 135^o$ and $\angle BPD = 150^o$. Suppose furthermore that the distance from P to $AC$ is $18$. Find the distance from $P$ to $BD$. [u]Round 7 [/u] [b]p19.[/b] Let triangle $ABC$ be an isosceles triangle with $|AB| = |AC|$. Let $D$ and $E$ lie on $AB$ and $AC$, respectively. Suppose $|AD| = |BC| = |EC|$ and triangle $ADE$ is isosceles. Find the sum of all possible values of $\angle BAC$ in radians. Write your answer in the form $2 arcsin \left( \frac{a}{b}\right) + \frac{c}{d} \pi$, where $\frac{a}{b}$ and $\frac{c}{d}$ are in lowest terms, $-1 \le \frac{a}{b} \le 1$, and $-1 \le \frac{c}{d} \le 1$. [b]p20.[/b] Kevin is playing a game in which he aims to maximize his score. In the $n^{th}$ round, for $n \ge 1$, a real number between $0$ and $\frac{1}{3^n}$ is randomly generated. At each round, Kevin can either choose to have the randomly generated number from that round as his score and end the game, or he can choose to pass on the number and continue to the next round. Once Kevin passes on a number, he CANNOT claim that number as his score. Kevin may continue playing for as many rounds as he wishes. If Kevin plays optimally, the expected value of his score is $a + b\sqrt{c}$ where $a, b$, and $c$ are integers and $c$ is positive and not divisible by any positive perfect square other than $1$. What is $100a + 10b + c$? [b]p21.[/b] Lisa the ladybug (a dimensionless ladybug) lives on the coordinate plane. She begins at the origin and walks along the grid, at each step moving either right or up one unit. The path she takes ends up at $(2016, 2017)$. Define the “area” of a path as the area below the path and above the $x$-axis. The sum of areas over all paths that Lisa can take can be represented as as $a \cdot {{4033} \choose {2016}}$ . What is the remainder when $a$ is divided by $1000$? PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c4h2782871p24446475]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2020 BMT Fall, 7

Compute the number of ordered triples of positive integers $(a,b,c)$ such that $a + b + c + ab + bc + ac = abc + 1$.

2020 China Team Selection Test, 3

For a non-empty finite set $A$ of positive integers, let $\text{lcm}(A)$ denote the least common multiple of elements in $A$, and let $d(A)$ denote the number of prime factors of $\text{lcm}(A)$ (counting multiplicity). Given a finite set $S$ of positive integers, and $$f_S(x)=\sum_{\emptyset \neq A \subset S} \frac{(-1)^{|A|} x^{d(A)}}{\text{lcm}(A)}.$$ Prove that, if $0 \le x \le 2$, then $-1 \le f_S(x) \le 0$.

1966 Spain Mathematical Olympiad, 2

A three-digit number is written $xyz$ in the base $7$ system and $zyx$ in the base $9$ system . What is the number?

2019 Saudi Arabia JBMO TST, 3

Let $d$ be a positive divisor of the number $A = 1024^{1024}+5$ and suppose that $d$ can be expressed as $d = 2x^2+2xy+3y^2$ for some integers $x,y$. Which remainder we can have when divide $d$ by $20$ ?

2017 Grand Duchy of Lithuania, 4

Show that there are infinitely many positive integers $n$ such that the number of distinct odd prime factors of $n(n + 3)$ is a multiple of $3$. (For instance, $180 = 2^2 \cdot 3^2 \cdot 5$ has two distinct odd prime factors and $840 = 2^3 \cdot 3 \cdot 5 \cdot 7$ has three.)

2000 Slovenia National Olympiad, Problem 1

Find all prime numbers whose base $b$ representations (for some $b$) contain each of the digits $0,1,\ldots,b-1$ exactly once. (Digit $0$ may appear as the first digit.)

2011 Postal Coaching, 2

For a positive integer $n$, consider the set \[S = \{0, 1, 1 + 2, 1 + 2 + 3, \ldots, 1 + 2 + 3 +\ldots + (n - 1)\}\] Prove that the elements of $S$ are mutually incongruent modulo $n$ if and only if $n$ is a power of $2$.

IV Soros Olympiad 1997 - 98 (Russia), 9.9

Find an odd natural number not exceeding $1000$ if you know that the sum of the last digits of all its divisors (including $1$ and the number itself) is $33$.

2024-IMOC, N7

Find all functions $f:\mathbb{N}\to\mathbb{N}$ such that $$|xf(y)-yf(x)|$$ is a perfect square for every $x,y \in \mathbb{N}$

2021 Stanford Mathematics Tournament, R5

[b]p17.[/b] Let the roots of the polynomial $f(x) = 3x^3 + 2x^2 + x + 8 = 0$ be $p, q$, and $r$. What is the sum $\frac{1}{p} +\frac{1}{q} +\frac{1}{r}$ ? [b]p18.[/b] Two students are playing a game. They take a deck of five cards numbered $1$ through $5$, shuffle them, and then place them in a stack facedown, turning over the top card next to the stack. They then take turns either drawing the card at the top of the stack into their hand, showing the drawn card to the other player, or drawing the card that is faceup, replacing it with the card on the top of the pile. This is repeated until all cards are drawn, and the player with the largest sum for their cards wins. What is the probability that the player who goes second wins, assuming optimal play? [b]p19.[/b] Compute the sum of all primes $p$ such that $2^p + p^2$ is also prime. [b]p20.[/b] In how many ways can one color the $8$ vertices of an octagon each red, black, and white, such that no two adjacent sides are the same color? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1997 Tournament Of Towns, (558) 3

Prove that the equation $$xy(x -y) + yz(y-z) + zx(z-x) = 6$$ has infinitely many solutions in integers $x, y$ and $z$. (N Vassiliev)

2022 Iran MO (3rd Round), 1

Assume natural number $n\ge2$. Amin and Ali take turns playing the following game: In each step, the player whose turn has come chooses index $i$ from the set $\{0,1,\cdots,n\}$, such that none of the two players had chosen this index in the previous turns; also this player in this turn chooses nonzero rational number $a_i$ too. Ali performs the first turn. The game ends when all the indices $i\in\{0,1,\cdots,n\}$ were chosen. In the end, from the chosen numbers the following polynomial is built: $$P(x)=a_nx^n+\cdots+a_1x+a_0$$ Ali's goal is that the preceding polynomial has a rational root and Amin's goal is that to prevent this matter. Find all $n\ge2$ such that Ali can play in a way to be sure independent of how Amin plays achieves his goal.

1998 IMO Shortlist, 2

Determine all pairs $(a,b)$ of real numbers such that $a \lfloor bn \rfloor =b \lfloor an \rfloor $ for all positive integers $n$. (Note that $\lfloor x\rfloor $ denotes the greatest integer less than or equal to $x$.)

2019 ABMC, Speed

[i]25 problems for 30 minutes[/i] [b]p1.[/b] Compute the sum $2019 + 201 + 20 + 2$. [b]p2.[/b] The sequence $100, 102, 104,..., 996$ and $998$ is the sequence of all three-digit even numbers. How many three digit even numbers are there? [b]p3.[/b] Find the units digit of $25\times 37\times 113\times 22$. [b]p4.[/b] Samuel has a number in his head. He adds $4$ to the number and then divides the result by $2$. After doing this, he ends up with the same number he had originally. What is his original number? [b]p5.[/b] According to Shay's Magazine, every third president is terrible (so the third, sixth, ninth president and so on were all terrible presidents). If there have been $44$ presidents, how many terrible presidents have there been in total? [b]p6.[/b] In the game Tic-Tac-Toe, a player wins by getting three of his or her pieces in the same row, column, or diagonal of a $3\times 3$ square. How many configurations of $3$ pieces are winning? Rotations and reflections are considered distinct. [b]p7.[/b] Eddie is a sad man. Eddie is cursed to break his arm $4$ times every $20$ years. How many times would he break his arm by the time he reaches age $100$? [b]p8. [/b]The figure below is made from $5$ congruent squares. If the figure has perimeter $24$, what is its area? [img]https://cdn.artofproblemsolving.com/attachments/1/9/6295b26b1b09cacf0c32bf9d3ba3ce76ddb658.png[/img] [b]p9.[/b] Sancho Panza loves eating nachos. If he eats $3$ nachos during the first minute, $4$ nachos during the second, $5$ nachos during the third, how many nachos will he have eaten in total after $15$ minutes? [b]p10.[/b] If the day after the day after the day before Wednesday was two days ago, then what day will it be tomorrow? [b]p11.[/b] Neetin the Rabbit and Poonam the Meerkat are in a race. Poonam can run at $10$ miles per hour, while Neetin can only hop at $2$ miles per hour. If Neetin starts the race $2$ miles ahead of Poonam, how many minutes will it take for Poonam to catch up with him? [b]p12.[/b] Dylan has a closet with t-shirts: $3$ gray, $4$ blue, $2$ orange, $7$ pink, and $2$ black. Dylan picks one shirt at random from his closet. What is the probability that Dylan picks a pink or a gray t-shirt? [b]p13.[/b] Serena's brain is $200\%$ the size of Eric's brain, and Eric's brain is $200\%$ the size of Carlson's. The size of Carlson's brain is what percent the size of Serena's? [b]p14.[/b] Find the sum of the coecients of $(2x + 1)^3$ when it is fully expanded. [b]p15. [/b]Antonio loves to cook. However, his pans are weird. Specifically, the pans are rectangular prisms without a top. What is the surface area of the outside of one of Antonio's pans if their volume is $210$, and their length and width are $6$ and $5$, respectively? [b]p16.[/b] A lattice point is a point on the coordinate plane with $2$ integer coordinates. For example, $(3, 4)$ is a lattice point since $3$ and $4$ are both integers, but $(1.5, 2)$ is not since $1.5$ is not an integer. How many lattice points are on the graph of the equation $x^2 + y^2 = 625$? [b]p17.[/b] Jonny has a beaker containing $60$ liters of $50\%$ saltwater ($50\%$ salt and $50\%$ water). Jonny then spills the beaker and $45$ liters pour out. If Jonny adds $45$ liters of pure water back into the beaker, what percent of the new mixture is salt? [b]p18.[/b] There are exactly 25 prime numbers in the set of positive integers between $1$ and $100$, inclusive. If two not necessarily distinct integers are randomly chosen from the set of positive integers from $1$ to $100$, inclusive, what is the probability that at least one of them is prime? [b]p19.[/b] How many consecutive zeroes are at the end of $12!$ when it is expressed in base $6$? [b]p20.[/b] Consider the following figure. How many triangles with vertices and edges from the following figure contain exactly $1$ black triangle? [img]https://cdn.artofproblemsolving.com/attachments/f/2/a1c400ff7d06b583c1906adf8848370e480895.png[/img] [b]p21.[/b] After Akshay got kicked o the school bus for rowdy behavior, he worked out a way to get home from school with his dad. School ends at $2:18$ pm, but since Akshay walks slowly he doesn't get to the front door until $2:30$. His dad doesn't like to waste time, so he leaves home everyday such that he reaches the high school at exactly $2:30$ pm, instantly picks up Akshay and turns around, then drives home. They usually get home at $3:30$ pm. However, one day Akshay left school early at exactly $2:00$ pm because he was expelled. Trying to delay telling his dad for as long as possible, Akshay starts jogging home. His dad left home at the regular time, saw Akshay on the way, picked him up and turned around instantly. They then drove home while Akshay's dad yelled at him for being a disgrace. They reached home at $3:10$ pm. How long had Akshay been walking before his dad picked him up? [b]p22.[/b] In quadrilateral $ABCD$, diagonals $AC$ and $BD$ intersect at $O$. Then $\angle BOC = \angle BCD$, $\angle COD =\angle BAD$, $AB = 4$, $DC = 6$, and $BD = 5$. What is the length of $BO$? [b]p23.[/b] A standard six-sided die is rolled. The number that comes up first determines the number of additional times the die will be rolled (so if the first number is $3$, then the die will be rolled $3$ more times). Each time the die is rolled, its value is recorded. What is the expected value of the sum of all the rolls? [b]p24.[/b] Dora has a peculiar calculator that can only perform $2$ operations: either adding $1$ to the current number or squaring the current number. Each minute, Dora randomly chooses an operation to apply to her number. She starts with $0$. What is the expected number of minutes it takes Dora's number to become greater than or equal to $10$? [b]p25.[/b] Let $\vartriangle ABC$ be such that $AB = 2$, $BC = 1$, and $\angle ACB = 90^o$. Let points $D$ and $E$ be such that $\vartriangle ADE$ is equilateral, $D$ is on segment $\overline{BC}$, and $D$ and $E$ are not on the same side of $\overline{AC}$. Segment $\overline{BE}$ intersects the circumcircle of $\vartriangle ADE$ at a second point $F$. If $BE =\sqrt{6}$, find the length of $\overline{BF}$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1998 Bundeswettbewerb Mathematik, 2

Prove that there exists an infinite sequence of perfect squares with the following properties: (i) The arithmetic mean of any two consecutive terms is a perfect square, (ii) Every two consecutive terms are coprime, (iii) The sequence is strictly increasing.

2012 IMO Shortlist, N1

Call admissible a set $A$ of integers that has the following property: If $x,y \in A$ (possibly $x=y$) then $x^2+kxy+y^2 \in A$ for every integer $k$. Determine all pairs $m,n$ of nonzero integers such that the only admissible set containing both $m$ and $n$ is the set of all integers. [i]Proposed by Warut Suksompong, Thailand[/i]

2003 Iran MO (3rd Round), 8

A positive integer $n$ is said to be a [i]perfect power[/i] if $n=a^b$ for some integers $a,b$ with $b>1$. $(\text{a})$ Find $2004$ perfect powers in arithmetic progression. $(\text{b})$ Prove that perfect powers cannot form an infinite arithmetic progression.

2020 South East Mathematical Olympiad, 7

Arrange all square-free positive integers in ascending order $a_1,a_2,a_3,\ldots,a_n,\ldots$. Prove that there are infinitely many positive integers $n$, such that $a_{n+1}-a_n=2020$.

2021 Harvard-MIT Mathematics Tournament., 6

Suppose that $m$ and $n$ are positive integers with $m < n$ such that the interval $[m, n)$ contains more multiples of $2021$ than multiples of $2000$. Compute the maximum possible value of $n - m$.

2020 China National Olympiad, 5

Given any positive integer $c$, denote $p(c)$ as the largest prime factor of $c$. A sequence $\{a_n\}$ of positive integers satisfies $a_1>1$ and $a_{n+1}=a_n+p(a_n)$ for all $n\ge 1$. Prove that there must exist at least one perfect square in sequence $\{a_n\}$.