This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2016 NIMO Problems, 4

Justine has two fair dice, one with sides labeled $1,2,\ldots, m$ and one with sides labeled $1,2,\ldots, n.$ She rolls both dice once. If $\tfrac{3}{20}$ is the probability that at least one of the numbers showing is at most 3, find the sum of all distinct possible values of $m+n$. [i]Proposed by Justin Stevens[/i]

1975 Bulgaria National Olympiad, Problem 1

Find all pairs of natural numbers $(m,n)$ bigger than $1$ for which $2^m+3^n$ is the square of whole number. [i]I. Tonov[/i]

2014 Dutch BxMO/EGMO TST, 1

Find all non-negative integer numbers $n$ for which there exists integers $a$ and $b$ such that $n^2=a+b$ and $n^3=a^2+b^2.$

2023 Stanford Mathematics Tournament, R7

[b]p19.[/b] $A_1A_2...A_{12}$ is a regular dodecagon with side length $1$ and center at point $O$. What is the area of the region covered by circles $(A_1A_2O)$, $(A_3A_4O)$, $(A_5A_6O)$, $(A_7A_8O)$, $(A_9A_{10}O)$, and $(A_{11}A_{12}O)$? $(ABC)$ denotes the circle passing through points $A,B$, and $C$. [b]p20.[/b] Let $N = 2000... 0x0 ... 00023$ be a $2023$-digit number where the $x$ is the $23$rd digit from the right. If$ N$ is divisible by $13$, compute $x$. [b]p21.[/b] Alice and Bob each visit the dining hall to get a grilled cheese at a uniformly random time between $12$ PM and $1$ PM (their arrival times are independent) and, after arrival, will wait there for a uniformly random amount of time between $0$ and $30$ minutes. What is the probability that they will meet? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2018 MOAA, Sets 7-12

[u]Set 7[/u] [b]p19.[/b] Let circles $\omega_1$ and $\omega_2$, with centers $O_1$ and $O_2$, respectively, intersect at $X$ and $Y$ . A lies on $\omega_1$ and $B$ lies on $\omega_2$ such that $AO_1$ and $BO_2$ are both parallel to $XY$, and $A$ and $B$ lie on the same side of $O_1O_2$. If $XY = 60$, $\angle XAY = 45^o$, and $\angle XBY = 30^o$, then the length of $AB$ can be expressed in the form $\sqrt{a - b\sqrt2 + c\sqrt3}$, where $a, b, c$ are positive integers. Determine $a + b + c$. [b]p20.[/b] If $x$ is a positive real number such that $x^{x^2}= 2^{80}$, find the largest integer not greater than $x^3$. [b]p21.[/b] Justin has a bag containing $750$ balls, each colored red or blue. Sneaky Sam takes out a random number of balls and replaces them all with green balls. Sam notices that of the balls left in the bag, there are $15$ more red balls than blue balls. Justin then takes out $500$ of the balls chosen randomly. If $E$ is the expected number of green balls that Justin takes out, determine the greatest integer less than or equal to $E$. [u]Set 8[/u] These three problems are interdependent; each problem statement in this set will use the answers to the other two problems in this set. As such, let the positive integers $A, B, C$ be the answers to problems $22$, $23$, and $24$, respectively, for this set. [b]p22.[/b] Let $WXYZ$ be a rectangle with $WX =\sqrt{5B}$ and $XY =\sqrt{5C}$. Let the midpoint of $XY$ be $M$ and the midpoint of $YZ$ be $N$. If $XN$ and $W Y$ intersect at $P$, determine the area of $MPNY$ . [b]p23.[/b] Positive integers $x, y, z$ satisfy $$xy \equiv A \,\, (mod 5)$$ $$yz \equiv 2A + C\,\, (mod 7)$$ $$zx \equiv C + 3 \,\, (mod 9).$$ (Here, writing $a \equiv b \,\, (mod m)$ is equivalent to writing $m | a - b$.) Given that $3 \nmid x$, $3 \nmid z$, and $9 | y$, find the minimum possible value of the product $xyz$. [b]p24.[/b] Suppose $x$ and $y$ are real numbers such that $$x + y = A$$ $$xy =\frac{1}{36}B^2.$$ Determine $|x - y|$. [u]Set 9[/u] [b]p25. [/b]The integer $2017$ is a prime which can be uniquely represented as the sum of the squares of two positive integers: $$9^2 + 44^2 = 2017.$$ If $N = 2017 \cdot 128$ can be uniquely represented as the sum of the squares of two positive integers $a^2 +b^2$, determine $a + b$. [b]p26.[/b] Chef Celia is planning to unveil her newest creation: a whole-wheat square pyramid filled with maple syrup. She will use a square flatbread with a one meter diagonal and cut out each of the five polygonal faces of the pyramid individually. If each of the triangular faces of the pyramid are to be equilateral triangles, the largest volume of syrup, in cubic meters, that Celia can enclose in her pyramid can be expressed as $\frac{a-\sqrt{b}}{c}$ where $a, b$ and $c$ are the smallest possible possible positive integers. What is $a + b + c$? [b]p27.[/b] In the Cartesian plane, let $\omega$ be the circle centered at $(24, 7)$ with radius $6$. Points $P, Q$, and $R$ are chosen in the plane such that $P$ lies on $\omega$, $Q$ lies on the line $y = x$, and $R$ lies on the $x$-axis. The minimum possible value of $PQ+QR+RP$ can be expressed in the form $\sqrt{m}$ for some integer $m$. Find m. [u]Set 10[/u] [i]Deja vu?[/i] [b]p28. [/b] Let $ABC$ be a triangle with incircle $\omega$. Let $\omega$ intersect sides $BC$, $CA$, $AB$ at $D, E, F$, respectively. Suppose $AB = 7$, $BC = 12$, and $CA = 13$. If the area of $ABC$ is $K$ and the area of $DEF$ is $\frac{m}{n}\cdot K$, where $m$ and $n$ are relatively prime positive integers, then compute $m + n$. [b]p29.[/b] Sebastian is playing the game Split! again, but this time in a three dimensional coordinate system. He begins the game with one token at $(0, 0, 0)$. For each move, he is allowed to select a token on any point $(x, y, z)$ and take it off, replacing it with three tokens, one at $(x + 1, y, z)$, one at $(x, y + 1, z)$, and one at $(x, y, z + 1)$ At the end of the game, for a token on $(a, b, c)$, it is assigned a score $\frac{1}{2^{a+b+c}}$ . These scores are summed for his total score. If the highest total score Sebastian can get in $100$ moves is $m/n$, then determine $m + n$. [b]p30.[/b] Determine the number of positive $6$ digit integers that satisfy the following properties: $\bullet$ All six of their digits are $1, 5, 7$, or $8$, $\bullet$ The sum of all the digits is a multiple of $5$. [u]Set 11[/u] [b]p31.[/b] The triangular numbers are defined as $T_n =\frac{n(n+1)}{2}$. We also define $S_n =\frac{n(n+2)}{3}$. If the sum $$\sum_{i=16}^{32} \left(\frac{1}{T_i}+\frac{1}{S_i}\right)= \left(\frac{1}{T_{16}}+\frac{1}{S_{16}}\right)+\left(\frac{1}{T_{17}}+\frac{1}{S_{17}}\right)+...+\left(\frac{1}{T_{32}}+\frac{1}{S_{32}}\right)$$ can be written in the form $a/b$ , where $a$ and $b$ are positive integers with $gcd(a, b) = 1$, then find $a + b$. [b]p32.[/b] Farmer Will is considering where to build his house in the Cartesian coordinate plane. He wants to build his house on the line $y = x$, but he also has to minimize his travel time for his daily trip to his barnhouse at $(24, 15)$ and back. From his house, he must first travel to the river at $y = 2$ to fetch water for his animals. Then, he heads for his barnhouse, and promptly leaves for the long strip mall at the line $y =\sqrt3 x$ for groceries, before heading home. If he decides to build his house at $(x_0, y_0)$ such that the distance he must travel is minimized, $x_0$ can be written in the form $\frac{a\sqrt{b}-c}{d}$ , where $a, b, c, d$ are positive integers, $b$ is not divisible by the square of a prime, and $gcd(a, c, d) = 1$. Compute $a+b+c+d$. [b]p33.[/b] Determine the greatest positive integer $n$ such that the following two conditions hold: $\bullet$ $n^2$ is the difference of consecutive perfect cubes; $\bullet$ $2n + 287$ is the square of an integer. [u]Set 12[/u] The answers to these problems are nonnegative integers that may exceed $1000000$. You will be awarded points as described in the problems. [b]p34.[/b] The “Collatz sequence” of a positive integer n is the longest sequence of distinct integers $(x_i)_{i\ge 0}$ with $x_0 = n$ and $$x_{n+1} =\begin{cases} \frac{x_n}{2} & if \,\, x_n \,\, is \,\, even \\ 3x_n + 1 & if \,\, x_n \,\, is \,\, odd \end{cases}.$$ It is conjectured that all Collatz sequences have a finite number of elements, terminating at $1$. This has been confirmed via computer program for all numbers up to $2^{64}$. There is a unique positive integer $n < 10^9$ such that its Collatz sequence is longer than the Collatz sequence of any other positive integer less than $10^9$. What is this integer $n$? An estimate of $e$ gives $\max\{\lfloor 32 - \frac{11}{3}\log_{10}(|n - e| + 1)\rfloor, 0\}$ points. [b]p35.[/b] We define a graph $G$ as a set $V (G)$ of vertices and a set $E(G)$ of distinct edges connecting those vertices. A graph $H$ is a subgraph of $G$ if the vertex set $V (H)$ is a subset of $V (G)$ and the edge set $E(H)$ is a subset of $E(G)$. Let $ex(k, H)$ denote the maximum number of edges in a graph with $k$ vertices without a subgraph of $H$. If $K_i$ denotes a complete graph on $i$ vertices, that is, a graph with $i$ vertices and all ${i \choose 2}$ edges between them present, determine $$n =\sum_{i=2}^{2018} ex(2018, K_i).$$ An estimate of $e$ gives $\max\{\lfloor 32 - 3\log_{10}(|n - e| + 1)\rfloor, 0\}$ points. [b]p36.[/b] Write down an integer between $1$ and $100$, inclusive. This number will be denoted as $n_i$ , where your Team ID is $i$. Let $S$ be the set of Team ID’s for all teams that submitted an answer to this problem. For every ordered triple of distinct Team ID’s $(a, b, c)$ such that a, b, c ∈ S, if all roots of the polynomial $x^3 + n_ax^2 + n_bx + n_c$ are real, then the teams with ID’s $a, b, c$ will each receive one virtual banana. If you receive $v_b$ virtual bananas in total and $|S| \ge 3$ teams submit an answer to this problem, you will be awarded $$\left\lfloor \frac{32v_b}{3(|S| - 1)(|S| - 2)}\right\rfloor$$ points for this problem. If $|S| \le 2$, the team(s) that submitted an answer to this problem will receive $32$ points for this problem. PS. You had better use hide for answers. First sets have been posted [url=https://artofproblemsolving.com/community/c4h2777264p24369138]here[/url].Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2017 Iran Team Selection Test, 2

Find the largest number $n$ that for which there exists $n$ positive integers such that non of them divides another one, but between every three of them, one divides the sum of the other two. [i]Proposed by Morteza Saghafian[/i]

2002 Abels Math Contest (Norwegian MO), 1a

Find all integers $k$ such that both $k + 1$ and $16k + 1$ are perfect squares.

2001 JBMO ShortLists, 7

Prove that there are are no positive integers $x$ and $y$ such that $x^5+y^5+1=(x+2)^5+(y-3)^5$. [hide="Note"] The restriction $x,y$ are positive isn't necessary.[/hide]

OMMC POTM, 2022 4

Define a function $P(n)$ from the set of positive integers to itself, where $P(1)=1$ and if an integer $n > 1$ has prime factorization $$n = p_1^{a_1}p_2^{a_2} \dots p_k^{a_k}$$ then $$P(n) = a_1^{p_1}a_2^{p_2} \dots a_k^{p_k}.$$ Prove that $P(P(n)) \le n$ for all positive integers $n.$ [i]Proposed by Evan Chang (squareman), USA[/i]

2012 India PRMO, 4

The letters $R, M$, and $O$ represent whole numbers. If $R \times M \times O = 240$, $R \times O + M =46$ and $R + M \times O = 64$, what is the value of $R + M + O$?

ABMC Online Contests, 2022 Dec

[b]p1.[/b] If $A = 0$, $B = 1$, $C = 2$, $...$, $Z = 25$, then what is the sum of $A + B + M+ C$? [b]p2.[/b] Eric is playing Tetris against Bryan. If Eric wins one-fifth of the games he plays and he plays $15$ games, find the expected number of games Eric will win. [b]p3.[/b] What is the sum of the measures of the exterior angles of a regular $2023$-gon in degrees? [b]p4.[/b] If $N$ is a base $10$ digit of $90N3$, what value of $N$ makes this number divisible by $477$? [b]p5.[/b] What is the rightmost non-zero digit of the decimal expansion of $\frac{1}{2^{2023}}$ ? [b]p6.[/b] if graphs of $y = \frac54 x + m$ and $y = \frac32 x + n$ intersect at $(16, 27)$, what is the value of $m + n$? [b]p7.[/b] Bryan is hitting the alphabet keys on his keyboard at random. If the probability he spells out ABMC at least once after hitting $6$ keys is $\frac{a}{b^c}$ , for positive integers $a$, $b$, $c$ where $b$, $c$ are both as small as possible, find $a+b+c$. Note that the letters ABMC must be adjacent for it to count: AEBMCC should not be considered as correctly spelling out ABMC. [b]p8.[/b] It takes a Daniel twenty minutes to change a light bulb. It takes a Raymond thirty minutes to change a light bulb. It takes a Bryan forty-five minutes to change a light bulb. In the time that it takes two Daniels, three Raymonds, and one and a half Bryans to change $42$ light bulbs, how many light bulbs could half a Raymond change? Assume half a person can work half as productively as a whole person. [b]p9.[/b] Find the value of $5a + 4b + 3c + 2d + e$ given $a, b, c, d, e$ are real numbers satisfying the following equations: $$a^2 = 2e + 23$$ $$b^2 = 10a - 34$$ $$c^2 = 8b - 23$$ $$d^2 = 6c - 14$$ $$e^2 = 4d - 7.$$ [b]p10.[/b] How many integers between $1$ and $1000$ contain exactly two $1$’s when written in base $2$? [b]p11.[/b] Joe has lost his $2$ sets of keys. However, he knows that he placed his keys in one of his $12$ mailboxes, each labeled with a different positive integer from $1$ to $12$. Joe plans on opening the $2$ mailbox labeled $1$ to see if any of his keys are there. However, a strong gust of wind blows by, opening mailboxes $11$ and $12$, revealing that they are empty. If Joe decides to open one of the mailboxes labeled $2$, $3$, $4$, $5$, $6$, $7$, $8$, $9$ , or $10$, the probability that he finds at least one of his sets of keys can be expressed as $\frac{a}{b}$, where a and b are relatively prime positive integers. Find the sum $a + b$. Note that a single mailbox can contain $0$, $1$, or $2$ sets of keys, and the mailboxes his sets of keys were placed in are determined independently at random. [b]p12.[/b] As we all know, the top scientists have recently proved that the Earth is a flat disc. Bob is standing on Earth. If he takes the shortest path to the edge, he will fall off after walking $1$ meter. If he instead turns $90$ degrees away from the shortest path and walks towards the edge, he will fall off after $3$ meters. Compute the radius of the Earth. [b]p13.[/b] There are $999$ numbers that are repeating decimals of the form $0.abcabcabc...$ . The sum of all of the numbers of this form that do not have a $1$ or $2$ in their decimal representation can be expressed as $\frac{a}{b}$ for relatively prime positive integers $a$, $b$. Find $a + b$. [b]p14.[/b] An ant is crawling along the edges of a sugar cube. Every second, it travels along an edge to another adjacent vertex randomly, interested in the sugar it notices. Unfortunately, the cube is about to be added to some scalding coffee! In $10$ seconds, it must return to its initial vertex, so it can get off and escape. If the probability the ant will avoid a tragic doom can be expressed as $\frac{a}{3^{10}}$ , where $a$ is a positive integer, find $a$. Clarification: The ant needs to be on its initial vertex in exactly $10$ seconds, no more or less. [b]p15.[/b] Raymond’s new My Little Pony: Friendship is Magic Collector’s book arrived in the mail! The book’s pages measure $4\sqrt3$ inches by $12$ inches, and are bound on the longer side. If Raymond keeps one corner in the same plane as the book, what is the total area one of the corners can travel without ripping the page? If the desired area in square inches is $a\pi+b\sqrt{c}$ where $a$, $b$, and $c$ are integers and $c$ is squarefree, find $a + b + c$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2018 Azerbaijan BMO TST, 1

Find all positive integers $(x,y)$ such that $x^2+y^2=2017(x-y)$

1988 Tournament Of Towns, (177) 3

The set of all $10$-digit numbers may be represented as a union of two subsets: the subset $M$ consisting of all $10$-digit numbers, each of which may be represented as a product of two $5$-digit numbers, and the subset $N$ , containing the remaining $10$-digit numbers . Which of the sets $M$ and $N$ contains more elements? (S. Fomin , Leningrad)

2020 Indonesia Juniors, day 1

p1. Let $AB$ be the diameter of the circle and $P$ is a point outside the circle. The lines $PQ$ and $PR$ are tangent to the circles at points $Q$ and $R$. The lines $PH$ is perpendicular on line $AB$ at $H$ . Line $PH$ intersects $AR$ at $S$. If $\angle QPH =40^o$ and $\angle QSA =30^o$, find $\angle RPS$. p2. There is a meeting consisting of $40$ seats attended by $16$ invited guests. If each invited guest must be limited to at least $ 1$ chair, then determine the number of arrangements. p3. In the crossword puzzle, in the following crossword puzzle, each box can only be filled with numbers from $ 1$ to $9$. [img]https://cdn.artofproblemsolving.com/attachments/2/e/224b79c25305e8ed9a8a4da51059f961b9fbf8.png[/img] Across: 1. Composite factor of $1001$ 3. Non-polyndromic numbers 5. $p\times q^3$, with $p\ne q$ and $p,q$ primes Down: 1. $a-1$ and $b+1$ , $a\ne b$ and $p,q$ primes 2. multiple of $9$ 4. $p^3 \times q$, with $p\ne q$ and $p,q$ primes p4. Given a function $f:R \to R$ and a function $g:R \to R$, so that it fulfills the following figure: [img]https://cdn.artofproblemsolving.com/attachments/b/9/fb8e4e08861a3572412ae958828dce1c1e137a.png[/img] Find the number of values ​​of $x$, such that $(f(x))^2-2g(x)-x \in\{-10,-9,-8,…,9,10\}$. p5. In a garden that is rectangular in shape, there is a watchtower in each corner and in the garden there is a monitoring tower. Small areas will be made in the shape of a triangle so that the corner points are towers (free of monitoring and/or supervisory towers). Let $k(m,n)$ be the number of small areas created if there are $m$ control towers and $n$ monitoring towers. a. Find the values ​​of $k(4,1)$, $k(4,2)$, $k(4,3)$, and $k(4,4)$ b. Find the general formula $k(m,n)$ with $m$ and $n$ natural numbers .

2019 Indonesia MO, 7

Determine all solutions of \[ x + y^2 = p^m \] \[ x^2 + y = p^n \] For $x,y,m,n$ positive integers and $p$ being a prime.

1999 AIME Problems, 13

Forty teams play a tournament in which every team plays every other team exactly once. No ties occur, and each team has a $50 \%$ chance of winning any game it plays. The probability that no two teams win the same number of games is $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $\log_2 n.$

2023 Singapore Junior Math Olympiad, 5

Find all positive integers $k$ such that there exists positive integers $a, b$ such that \[a^2+4=(k^2-4)b^2.\]

2014 Argentina National Olympiad Level 2, 1

An [i]operation[/i] on three given non-negative integers consists in increasing two of them by $1$ and decreasing the third by $2$, provided the new numbers are non-negative. The process begins with three non-negative integers that add up to $100$ and are less than $100$. Find the number of distinct triplets that can be obtained by applying the operation. (Triplets that differ only in the order of their members are considered the same).

2010 CHMMC Winter, 4

Compute the number of positive divisors of $2010$.

2013 Hanoi Open Mathematics Competitions, 1

How many three-digit perfect squares are there such that if each digit is increased by one, the resulting number is also a perfect square? (A): $1$, (B): $2$, (C): $4$, (D): $8$, (E) None of the above.

2017 Tuymaada Olympiad, 6

Let $\sigma(n) $ denote the sum of positive divisors of a number $n $. A positive integer $N=2^rb $ is given,where $r $ and $b $ are positive integers and $b $ is odd. It is known that $\sigma(N)=2N-1$. Prove that $b$ and $\sigma (b) $ are coprime. Tuymaada Q6 Juniors

2009 Tournament Of Towns, 2

Let $a^b$ denote the number $ab$. The order of operations in the expression 7^7^7^7^7^7^7 must be determined by parentheses ($5$ pairs of parentheses are needed). Is it possible to put parentheses in two distinct ways so that the value of the expression be the same?

1998 Mexico National Olympiad, 4

Find all integers that can be written in the form $\frac{1}{a_1}+\frac{2}{a_2}+...+\frac{9}{a_9}$ where $a_1,a_2, ...,a_9$ are nonzero digits, not necessarily different.

Mathematical Minds 2023, P8

Prove that if $N{}$ is a large enough positive integer, then for any permutation $\pi_1,\ldots,\pi_N$ of $1,\ldots, N$ at least $11\%$ of the pairs $(i,j)$ of indices from $1{}$ to $N{}$ satisfy $\gcd(i,j)=1=\gcd(\pi_i,\pi_j).$ [i]Proposed by Vlad Spătaru[/i]

2016 CMIMC, 9

Compute the number of positive integers $n \leq 50$ such that there exist distinct positive integers $a,b$ satisfying \[ \frac{a}{b} +\frac{b}{a} = n \left(\frac{1}{a} + \frac{1}{b}\right). \]