This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2013 VJIMC, Problem 3

Let $S$ be a finite set of integers. Prove that there exists a number $c$ depending on $S$ such that for each non-constant polynomial $f$ with integer coefficients the number of integers $k$ satisfying $f(k)\in S$ does not exceed $\max(\deg f,c)$.

2023 LMT Fall, 8

Let $J$ , $E$, $R$, and $Y$ be four positive integers chosen independently and uniformly at random from the set of factors of $1428$. What is the probability that $JERRY = 1428$? Express your answer in the form $\frac{a}{b\cdot 2^n}$ where $n$ is a nonnegative integer, $a $and $b$ are odd, and gcd $(a,b) = 1$.

2015 Czech-Polish-Slovak Junior Match, 2

Decide if the vertices of a regular $30$-gon can be numbered by numbers $1, 2,.., 30$ in such a way that the sum of the numbers of every two neighboring to be a square of a certain natural number.

2015 Saint Petersburg Mathematical Olympiad, 2

$a,b>1$ - are naturals, and $a^2+b,a+b^2$ are primes. Prove $(ab+1,a+b)=1$

2023 BMT, 8

One of Landau’s four unsolved problems asks whether there are infinitely many primes $p$ such that $p- 1$ is a perfect square. How many such primes are there less than $100$?

2019 HMNT, 2

Meghana writes two (not necessarily distinct) primes $q$ and $r$ in base $10$ next to each other on a blackboard, resulting in the concatenation of $q$ and $r$ (for example, if $q = 13$ and $r = 5$, the number on the blackboard is now $135$). She notices that three more than the resulting number is the square of a prime $p$. Find all possible values of $p$.

1998 Slovenia National Olympiad, Problem 1

Find all positive integers $n$ that are equal to the sum of digits of $n^2$.

2020 Centroamerican and Caribbean Math Olympiad, 6

A positive integer $N$ is [i]interoceanic[/i] if its prime factorization $$N=p_1^{x_1}p_2^{x_2}\cdots p_k^{x_k}$$ satisfies $$x_1+x_2+\dots +x_k=p_1+p_2+\cdots +p_k.$$ Find all interoceanic numbers less than 2020.

2024 Mathematical Talent Reward Programme, 3

The smallest positive integer which can be expressed as sum of positive perfect cubes (possibly with repetition and/or with a single element sum) in at least two different ways in $$(A) 8$$ $$(B) 1729$$ $$(C) 2023$$ $$(D) 2024$$

1996 AIME Problems, 12

For each permutation $ a_1, a_2, a_3, \ldots,a_{10}$ of the integers $ 1,2,3,\ldots,10,$ form the sum \[ |a_1 \minus{} a_2| \plus{} |a_3 \minus{} a_4| \plus{} |a_5 \minus{} a_6| \plus{} |a_7 \minus{} a_8| \plus{} |a_9 \minus{} a_{10}|.\] The average value of all such sums can be written in the form $ p/q,$ where $ p$ and $ q$ are relatively prime positive integers. Find $ p \plus{} q.$

2007 All-Russian Olympiad Regional Round, 8.3

Determine if there exist prime numbers $ p_{1},p_{2},...,p_{2007}$ such that $ p_{2}|p_{1}^{2}\minus{}1,p_{3}|p_{2}^{2}\minus{}1,...,p_{1}|p_{2007}^{2}\minus{}1$.

2002 AMC 10, 16

For how many integers $ n$ is $ \frac{n}{20\minus{}n}$ the square of an integer? $ \textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 10$

2010 Cono Sur Olympiad, 1

Pedro must choose two irreducible fractions, each with a positive numerator and denominator such that: [list] [*]The sum of the fractions is equal to $2$. [*]The sum of the numerators of the fractions is equal to $1000$. [/list] In how many ways can Pedro do this?

2011 ELMO Shortlist, 3

Let $n>1$ be a fixed positive integer, and call an $n$-tuple $(a_1,a_2,\ldots,a_n)$ of integers greater than $1$ [i]good[/i] if and only if $a_i\Big|\left(\frac{a_1a_2\cdots a_n}{a_i}-1\right)$ for $i=1,2,\ldots,n$. Prove that there are finitely many good $n$-tuples. [i]Mitchell Lee.[/i]

2003 Olympic Revenge, 2

Let $x_n$ the sequence defined by any nonnegatine integer $x_0$ and $x_{n+1}=1+\prod_{0 \leq i \leq n}{x_i}$ Show that there exists prime $p$ such that $p\not|x_n$ for any $n$.

2018 Brazil Team Selection Test, 4

Find the smallest positive integer $n$ or show no such $n$ exists, with the following property: there are infinitely many distinct $n$-tuples of positive rational numbers $(a_1, a_2, \ldots, a_n)$ such that both $$a_1+a_2+\dots +a_n \quad \text{and} \quad \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$$ are integers.

2004 Harvard-MIT Mathematics Tournament, 3

How many ordered pairs of integers $(a, b)$ satisfy all of the following inequalities? $$a^2 + b^2 < 16$$ $$a^2 + b^2 < 8a$$ $$a^2 + b^2 < 8b$$

2003 Turkey Team Selection Test, 3

Is there an arithmetic sequence with a. $2003$ b. infinitely many terms such that each term is a power of a natural number with a degree greater than $1$?

2018 Pan-African Shortlist, N4

Let $S$ be a set of $49$-digit numbers $n$, with the property that each of the digits $1, 2, 3, \dots, 7$ appears in the decimal expansion of $n$ seven times (and $8, 9$ and $0$ do not appear). Show that no two distinct elements of $S$ divide each other.

2008 CentroAmerican, 1

Find the least positive integer $ N$ such that the sum of its digits is 100 and the sum of the digits of $ 2N$ is 110.

1991 Tournament Of Towns, (291) 1

Find all natural numbers $n$, and all integers $x,y$ ($x\ne y$) for which the following equation is satisfied: $$x + x^2 + x^4 + ...+ x^{2^n} = y + y^2 + y^4 + ... + y^{2^n} .$$

2018 Junior Balkan Team Selection Tests - Moldova, 1

$a_1,a_2,...a_{2018}$ are positive numbers,and $a_{2018}^2+a_{2017}^2=a_{2016}^2-a_{2015}^2+a_{2014}^2-...+a_{2}^2-a_{1}^2.$ Prove that $A=a_1a_2...a_{2018}+2025$ is a difference of two squares

ABMC Speed Rounds, 2022

[i]25 problems for 30 minutes[/i] [b]p1.[/b] Alisha has $6$ cupcakes and Tyrone has $10$ brownies. Tyrone gives some of his brownies to Alisha so that she has three times as many desserts as Tyrone. How many desserts did Tyrone give to Alisha? [b]p2.[/b] Bisky adds one to her favorite number. She then divides the result by $2$, and gets $56$. What is her favorite number? [b]p3.[/b] What is the maximum number of points at which a circle and a square can intersect? [b]p4.[/b] An integer $N$ leaves a remainder of 66 when divided by $120$. Find the remainder when $N$ is divided by $24$. [b]p5.[/b] $7$ people are chosen to run for student council. How many ways are there to pick $1$ president, $1$ vice president, and $1$ secretary? [b]p6.[/b] Anya, Beth, Chloe, and Dmitri are all close friends, and like to make group chats to talk. How many group chats can be made if Dmitri, the gossip, must always be in the group chat and Anya is never included in them? Group chats must have more than one person. [b]p7.[/b] There exists a telephone pole of height $24$ feet. From the top of this pole, there are two wires reaching the ground in opposite directions, with one wire $25$ feet, and the other wire 40 feet. What is the distance (in feet) between the places where the wires hit the ground? [b]p8.[/b] Tarik is dressing up for a job-interview. He can wear a chill, business, or casual outfit. If he wears a chill oufit, he must wear a t-shirt, shorts, and flip-flops. He has eight of the first, seven of the second, and three of the third. If he wears a business outfit, he must wear a blazer, a tie, and khakis; he has two of the first, six of the second, and five of the third; finally, he can also choose the casual style, for which he has three hoodies, nine jeans, and two pairs of sneakers. How many different combinations are there for his interview? [b]p9.[/b] If a non-degenerate triangle has sides $11$ and $13$, what is the sum of all possibilities for the third side length, given that the third side has integral length? [b]p10.[/b] An unknown disease is spreading fast. For every person who has the this illness, it is spread on to $3$ new people each day. If Mary is the only person with this illness at the start of Monday, how many people will have contracted the illness at the end of Thursday? [b]p11.[/b] Gob the giant takes a walk around the equator on Mars, completing one lap around Mars. If Gob’s head is $\frac{13}{\pi}$ meters above his feet, how much farther (in meters) did his head travel than his feet? [b]p12.[/b] $2022$ leaves a remainder of $2$, $6$, $9$, and $7$ when divided by $4$, $7$, $11$, and $13$ respectively. What is the next positive integer which has the same remainders to these divisors? [b]p13.[/b] In triangle $ABC$, $AB = 20$, $BC = 21$, and $AC = 29$. Let D be a point on $AC$ such that $\angle ABD = 45^o$. If the length of $AD$ can be represented as $\frac{a}{b}$ , what is $a + b$? [b]p14.[/b] Find the number of primes less than $100$ such that when $1$ is added to the prime, the resulting number has $3$ divisors. [b]p15.[/b] What is the coefficient of the term $a^4z^3$ in the expanded form of $(z - 2a)^7$? [b]p16.[/b] Let $\ell$ and $m$ be lines with slopes $-2$, $1$ respectively. Compute $|s_1 \cdot s_2|$ if $s_1$, $s_2$ represent the slopes of the two distinct angle bisectors of $\ell$ and $m$. [b]p17.[/b] R1D2, Lord Byron, and Ryon are creatures from various planets. They are collecting monkeys for King Avanish, who only understands octal (base $8$). R1D2 only understands binary (base $2$), Lord Byron only understands quarternary (base $4$), and Ryon only understands decimal (base $10$). R1D2 says he has $101010101$ monkeys and adds his monkey to the pile. Lord Byron says he has $3231$ monkeys and adds them to the pile. Ryon says he has $576$ monkeys and adds them to the pile. If King Avanish says he has $x$ monkeys, what is the value of $x$? [b]p18.[/b] A quadrilateral is defined by the origin, $(3, 0)$, $(0, 10)$, and the vertex of the graph of $y = x^2 -8x+22$. What is the area of this quadrilateral? [b]p19.[/b] There is a sphere-container, filled to the brim with fruit punch, of diameter $6$. The contents of this container are poured into a rectangular prism container, again filled to the brim, of dimensions $2\pi$ by $4$ by $3$. However, there is an excess amount in the original container. If all the excess drink is poured into conical containers with diameter $4$ and height $3$, how many containers will be used? [b]p20.[/b] Brian is shooting arrows at a target, made of concurrent circles of radius $1$, $2$, $3$, and $4$. He gets $10$ points for hitting the innermost circle, $8$ for hitting between the smallest and second smallest circles, $5$ for between the second and third smallest circles, $2$ points for between the third smallest and outermost circle, and no points for missing the target. Assume for each shot he takes, there is a $20\%$ chance Brian will miss the target, but otherwise the chances of hitting each target are proportional to the area of the region. The chance that after three shots, Brian will have scored $15$ points can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m, n$. Find $m + n$. [b]p21.[/b] What is the largest possible integer value of $n$ such that $\frac{2n^3+n^2+7n-15}{2n+1}$ is an integer? [b]p22.[/b] Let $f(x, y) = x^3 + x^2y + xy^2 + y^3$. Compute $f(0, 2) + f(1, 3) +... f(9, 11).$ [b]p23.[/b] Let $\vartriangle ABC$ be a triangle. Let $AM$ be a median from $A$. Let the perpendicular bisector of segment $\overline{AM}$ meet $AB$ and $AC$ at $D$, $E$ respectively. Given that $AE = 7$, $ME = MC$, and $BDEC$ is cyclic, then compute $AM^2$. [b]p24.[/b] Compute the number of ordered triples of positive integers $(a, b, c)$ such that $a \le 10$, $b \le 11$, $c \le 12$ and $a > b - 1$ and $b > c - 1$. [b]p25.[/b] For a positive integer $n$, denote by $\sigma (n)$ the the sum of the positive integer divisors of $n$. Given that $n + \sigma (n)$ is odd, how many possible values of $n$ are there from $1$ to $2022$, inclusive? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2019 Bangladesh Mathematical Olympiad, 6

When a function $f(x)$ is differentiated $n$ times ,the function we get id denoted $f^n(x)$.If $f(x)=\dfrac {e^x}{x}$.Find the value of \[\lim_{n \to \infty} \dfrac {f^ {2n}(1)}{(2n)!}\]

2020 Saint Petersburg Mathematical Olympiad, 1.

A positive integer is called [i]hypotenuse[/i] if it can be represented as a sum of two squares of non-negative integers. Prove that any natural number greater than $10$ is the difference of two hypotenuse numbers.