This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2003 All-Russian Olympiad Regional Round, 10.7

Prove that from an arbitrary set of three-digit numbers, including at least four numbers that are mutually prime, you can choose four numbers that are also mutually prime

PEN O Problems, 27

Let $p$ and $q$ be relatively prime positive integers. A subset $S\subseteq \mathbb{N}_0$ is called ideal if $0 \in S$ and, for each element $n \in S$, the integers $n+p$ and $n+q$ belong to $S$. Determine the number of ideal subsets of $\mathbb{N}_0$.

1992 AIME Problems, 9

Trapezoid $ABCD$ has sides $AB=92$, $BC=50$, $CD=19$, and $AD=70$, with $AB$ parallel to $CD$. A circle with center $P$ on $AB$ is drawn tangent to $BC$ and $AD$. Given that $AP=\frac mn$, where $m$ and $n$ are relatively prime positive integers, find $m+n$.

2022 Brazil National Olympiad, 5

Initially, a natural number $n$ is written on the blackboard. Then, at each minute, Esmeralda chooses a divisor $d>1$ of $n$, erases $n$, and writes $n+d$. If the initial number on the board is $2022$, what is the largest composite number that Esmeralda will never be able to write on the blackboard?

2016 Indonesia MO, 7

Suppose that $p> 2$ is a prime number. For each integer $k = 1, 2,..., p-1$, denote $r_k$ as the remainder of the division $k^p$ by $p^2$. Prove that $r_1+r_2+r_3+...+r_{p-1}=\frac{p^2(p-1)}{2}$

1998 South africa National Olympiad, 5

Prove that \[ \gcd{\left({n \choose 1},{n \choose 2},\dots,{n \choose {n - 1}}\right)} \] is a prime if $n$ is a power of a prime, and 1 otherwise.

2017 LMT, Team Round

[b]p1.[/b] Suppose that $20\%$ of a number is $17$. Find $20\%$ of $17\%$ of the number. [b]p2.[/b] Let $A, B, C, D$ represent the numbers $1$ through $4$ in some order, with $A \ne 1$. Find the maximum possible value of $\frac{\log_A B}{C +D}$. Here, $\log_A B$ is the unique real number $X$ such that $A^X = B$. [b]p3. [/b]There are six points in a plane, no four of which are collinear. A line is formed connecting every pair of points. Find the smallest possible number of distinct lines formed. [b]p4.[/b] Let $a,b,c$ be real numbers which satisfy $$\frac{2017}{a}= a(b +c), \frac{2017}{b}= b(a +c), \frac{2017}{c}= c(a +b).$$ Find the sum of all possible values of $abc$. [b]p5.[/b] Let $a$ and $b$ be complex numbers such that $ab + a +b = (a +b +1)(a +b +3)$. Find all possible values of $\frac{a+1}{b+1}$. [b]p6.[/b] Let $\vartriangle ABC$ be a triangle. Let $X,Y,Z$ be points on lines $BC$, $CA$, and $AB$, respectively, such that $X$ lies on segment $BC$, $B$ lies on segment $AY$ , and $C$ lies on segment $AZ$. Suppose that the circumcircle of $\vartriangle XYZ$ is tangent to lines $AB$, $BC$, and $CA$ with center $I_A$. If $AB = 20$ and $I_AC = AC = 17$ then compute the length of segment $BC$. [b]p7. [/b]An ant makes $4034$ moves on a coordinate plane, beginning at the point $(0, 0)$ and ending at $(2017, 2017)$. Each move consists of moving one unit in a direction parallel to one of the axes. Suppose that the ant stays within the region $|x - y| \le 2$. Let N be the number of paths the ant can take. Find the remainder when $N$ is divided by $1000$. [b]p8.[/b] A $10$ digit positive integer $\overline{a_9a_8a_7...a_1a_0}$ with $a_9$ nonzero is called [i]deceptive [/i] if there exist distinct indices $i > j$ such that $\overline{a_i a_j} = 37$. Find the number of deceptive positive integers. [b]p9.[/b] A circle passing through the points $(2, 0)$ and $(1, 7)$ is tangent to the $y$-axis at $(0, r )$. Find all possible values of $ r$. [b]p10.[/b] An ellipse with major and minor axes $20$ and $17$, respectively, is inscribed in a square whose diagonals coincide with the axes of the ellipse. Find the area of the square. PS. You had better use hide for answers.

2002 France Team Selection Test, 3

Let $p\ge 3$ be a prime number. Show that there exist $p$ positive integers $a_1,a_2,\ldots ,a_p$ not exceeding $2p^2$ such that the $\frac{p(p-1)}{2}$ sums $a_i+a_j\ (i<j)$ are all distinct.

2008 Iran MO (3rd Round), 4

Let $ u$ be an odd number. Prove that $ \frac{3^{3u}\minus{}1}{3^u\minus{}1}$ can be written as sum of two squares.

1993 APMO, 4

Determine all positive integers $n$ for which the equation \[ x^n + (2+x)^n + (2-x)^n = 0 \] has an integer as a solution.

2020 Azerbaijan IMO TST, 2

We say that a set $S$ of integers is [i]rootiful[/i] if, for any positive integer $n$ and any $a_0, a_1, \cdots, a_n \in S$, all integer roots of the polynomial $a_0+a_1x+\cdots+a_nx^n$ are also in $S$. Find all rootiful sets of integers that contain all numbers of the form $2^a - 2^b$ for positive integers $a$ and $b$.

ABMC Team Rounds, 2021

[u]Round 5[/u] [b]5.1.[/b] Julia baked a pie for herself to celebrate pi day this year. If Julia bakes anyone pie on pi day, the following year on pi day she bakes a pie for herself with $1/3$ probability, she bakes her friend a pie with $1/6$ probability, and she doesn't bake anyone a pie with $1/2$ probability. However, if Julia doesn't make pie on pi day, the following year on pi day she bakes a pie for herself with $1/2$ probability, she bakes her friend a pie with $1/3$ probability, and she doesn't bake anyone a pie with $1/6$ probability. The probability that Julia bakes at least $2$ pies on pi day in the next $5$ years can be expressed as $p/q$, for relatively prime positive integers $p$ and $q$. Compute $p + q$. [b]5.2.[/b] Steven is flipping a coin but doesn't want to appear too lucky. If he ips the coin $8$ times, the probability he only gets sequences of consecutive heads or consecutive tails that are of length $4$ or less can be expressed as $p/q$, for relatively prime positive integers $p$ and $q$. Compute $p + q$. [b]5.3.[/b] Let $ABCD$ be a square with side length $3$. Further, let $E$ be a point on side$ AD$, such that $AE = 2$ and $DE = 1$, and let $F$ be the point on side $AB$ such that triangle $CEF$ is right with hypotenuse $CF$. The value $CF^2$ can be expressed as $m/n$ , where $m$ and $n$ are relatively prime positive integers. Compute $m + n$. [u]Round 6[/u] [b]6.1.[/b] Let $P$ be a point outside circle $\omega$ with center $O$. Let $A,B$ be points on circle $\omega$ such that $PB$ is a tangent to $\omega$ and $PA = AB$. Let $M$ be the midpoint of $AB$. Given $OM = 1$, $PB = 3$, the value of $AB^2$ can be expressed as $m/n$ for relatively prime positive integers $m, n$. Find $m + n$. [b]6.2.[/b] Let $a_0, a_1, a_2,...$with each term defined as $a_n = 3a_{n-1} + 5a_{n-2}$ and $a_0 = 0$, $a_1 = 1$. Find the remainder when $a_{2020}$ is divided by $360$. [b]6.3.[/b] James and Charles each randomly pick two points on distinct sides of a square, and they each connect their chosen pair of points with a line segment. The probability that the two line segments intersect can be expressed as $m/n$ for relatively prime positive integers $m, n$. Find $m + n$. [u]Round 7[/u] [b]7.1.[/b] For some positive integers $x, y$ let $g = gcd (x, y)$ and $\ell = lcm (2x, y)$: Given that the equation $xy+3g+7\ell = 168$ holds, find the largest possible value of $2x + y$. [b]7.2.[/b] Marco writes the polynomials $$f(x) = nx^4 +2x^3 +3x^2 +4x+5$$ and $$g(x) = a(x-1)^4 +b(x-1)^3 +6(x-1)^2 + d(x - 1) + e,$$ where $n, a, b, d, e$ are real numbers. He notices that $g(i) = f(i) - |i|$ for each integer $i$ satisfying $-5 \le i \le -1$. Then $n^2$ can be expressed as $p/q$ for relatively prime positive integers $p, q$. Find $p + q$. [b]7.3. [/b]Equilateral $\vartriangle ABC$ is inscribed in a circle with center $O$. Points $D$ and $E$ are chosen on minor arcs $AB$ and $BC$, respectively. Segment $\overline{CD}$ intersects $\overline{AB}$ and $\overline{AE}$ at $Y$ and $X$, respectively. Given that $\vartriangle DXE$ and $\vartriangle AXC$ have equal area, $\vartriangle AXY$ has area $ 1$, and $\vartriangle ABC$ has area $52$, find the area of $\vartriangle BXC$. [u]Round 8[/u] [b]8.[/b] Let $A$ be the number of total webpage visits our website received last month. Let $B$ be the number photos in our photo collection from ABMC onsite 2017. Let $M$ be the mean speed round score. Further, let $C$ be the number of times the letter c appears in our problem bank. Estimate $$A \cdot B + M \cdot C.$$Your answer will be scored according to the following formula, where $X$ is the correct answer and $I$ is your input. $$max \left\{ 0, \left\lceil min \left\{13 - \frac{|I-X|}{0.05 |I|}, 13 - \frac{|I-X|}{0.05 |I-2X|} \right\} \right\rceil \right\}$$ PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h2766251p24226451]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

MOAA Accuracy Rounds, 2019

[b]p1.[/b] Farmer John wants to bring some cows to a pasture with grass that grows at a constant rate. Initially, the pasture has some nonzero amount of grass and it will stop growing if there is no grass left. The pasture sustains $100$ cows for ten days. The pasture can also sustain $100$ cows for five days, and then $120$ cows for three more days. If cows eat at a constant rate, fund the maximum number of cows Farmer John can bring to the pasture so that they can be sustained indefinitely. [b]p2.[/b] Sam is learning basic arithmetic. He may place either the operation $+$ or $-$ in each of the blank spots between the numbers below: $$5\,\, \_ \,\, 8\,\, \_ \,\,9\,\, \_ \,\,7\,\,\_ \,\,2\,\,\_ \,\,3$$ In how many ways can he place the operations so the result is divisible by $3$? [b]p3.[/b] Will loves the color blue, but he despises the color red. In the $5\times 6$ rectangular grid below, how many rectangles are there containing at most one red square and with sides contained in the gridlines? [img]https://cdn.artofproblemsolving.com/attachments/1/7/7ce55bdc9e05c7c514dddc7f8194f3031b93c4.png[/img] [b]p4.[/b] Let $r_1, r_2, r_3$ be the three roots of a cubic polynomial $P(x)$. Suppose that $$\frac{P(2) + P(-2)}{P(0)}= 200.$$ If $\frac{1}{r_1r_2}+ \frac{1}{r_2r_3}+\frac{1}{r_3r_1}= \frac{m}{n}$ for relatively prime positive integers $m$ and $n$, compute $m + n$. [b]p5.[/b] Consider a rectangle $ABCD$ with $AB = 3$ and $BC = 1$. Let $O$ be the intersection of diagonals $AC$ and $BD$. Suppose that the circumcircle of $ \vartriangle ADO$ intersects line $AB$ again at $E \ne A$. Then, the length $BE$ can be written as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Find $m + n$. [b]p6.[/b] Let $ABCD$ be a square with side length $100$ and $M$ be the midpoint of side $AB$. The circle with center $M$ and radius $50$ intersects the circle with center $D$ and radius $100$ at point $E$. $CE$ intersects $AB$ at $F$. If $AF = \frac{m}{n}$ for relatively prime positive integers $m$ and $n$, find $m + n$. [b]p7.[/b] How many pairs of real numbers $(x, y)$, with $0 < x, y < 1$ satisfy the property that both $3x + 5y$ and $5x + 2y$ are integers? [b]p8.[/b] Sebastian is coloring a circular spinner with $4$ congruent sections. He randomly chooses one of four colors for each of the sections. If two or more adjacent sections have the same color, he fuses them and considers them as one section. (Sections meeting at only one point are not adjacent.) Suppose that the expected number of sections in the final colored spinner is equal to $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Compute $m + n$. [b]p9.[/b] Let $ABC$ be a triangle and $D$ be a point on the extension of segment $BC$ past $C$. Let the line through $A$ perpendicular to $BC$ be $\ell$. The line through $B$ perpendicular to $AD$ and the line through $C$ perpendicular to $AD$ intersect $\ell$ at $H_1$ and $H_2$, respectively. If $AB = 13$, $BC = 14$, $CA = 15$, and $H_1H_2 = 1001$, find $CD$. [b]p10.[/b] Find the sum of all positive integers $k$ such that $$\frac21 -\frac{3}{2 \times 1}+\frac{4}{3\times 2\times 1} + ...+ (-1)^{k+1} \frac{k+1}{k\times (k - 1)\times ... \times 2\times 1} \ge 1 + \frac{1}{700^3}$$ PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2015 Mathematical Talent Reward Programme, MCQ: P 2

Let $f_n(x)=\underbrace{xx\cdots x}_{n\ \text{times}}$ that is, $f_n(x)$ is a $n$ digit number with all digits $x$, where $x\in \{1,2,\cdots,9\}$. Then which of the following is $\Big(f_n(3)\Big)^2+f_n(2)$? [list=1] [*] $f_n(5)$ [*] $f_{2n}(9)$ [*] $f_{2n}(1)$ [*] None of these [/list]

2025 Bundeswettbewerb Mathematik, 2

For each integer $n \ge 2$ we consider the last digit different from zero in the decimal expansion of $n!$. The infinite sequence of these digits starts with $2,6,4,2,2$. Determine all digits which occur at least once in this sequence, and show that each of those digits occurs in fact infinitely often.

1993 Baltic Way, 3

Let’s call a positive integer [i]interesting[/i] if it is a product of two (distinct or equal) prime numbers. What is the greatest number of consecutive positive integers all of which are interesting?

2018 Latvia Baltic Way TST, P14

Let $a_1,a_2,...$ be a sequence of positive integers with $a_1=2$. For each $n \ge 1$, $a_{n+1}$ is the biggest prime divisor of $a_1a_2...a_n+1$. Prove that the sequence does not contain numbers $5$ and $11$.

1963 Putnam, A2

Let $f:\mathbb{N}\rightarrow \mathbb{N}$ be a strictly increasing function such that $f(2)=2$ and $f(mn)=f(m)f(n)$ for every pair of relatively prime positive integers $m$ and $n$. Prove that $f(n)=n$ for every positive integer $n$.

2009 AMC 12/AHSME, 18

For $ k>0$, let $ I_k\equal{}10\ldots 064$, where there are $ k$ zeros between the $ 1$ and the $ 6$. Let $ N(k)$ be the number of factors of $ 2$ in the prime factorization of $ I_k$. What is the maximum value of $ N(k)$? $ \textbf{(A)}\ 6\qquad \textbf{(B)}\ 7\qquad \textbf{(C)}\ 8\qquad \textbf{(D)}\ 9\qquad \textbf{(E)}\ 10$

Russian TST 2017, P4

For each positive integer $k$, let $S(k)$ the sum of digits of $k$ in decimal system. Show that there is an integer $k$, with no $9$ in it's decimal representation, such that: $$S(2^{24^{2017}}k)=S(k)$$

2022 Taiwan TST Round 3, 3

Determine all integers $n\geqslant 2$ with the following property: every $n$ pairwise distinct integers whose sum is not divisible by $n$ can be arranged in some order $a_1,a_2,\ldots, a_n$ so that $n$ divides $1\cdot a_1+2\cdot a_2+\cdots+n\cdot a_n.$ [i]Arsenii Nikolaiev, Anton Trygub, Oleksii Masalitin, and Fedir Yudin[/i]

Bangladesh Mathematical Olympiad 2020 Final, #1

A pair of positive integers $(m,n)$ is called [b][i]'steakmaker'[/i][/b] if they maintain the equation 1 + 2$^m$ = n$^2$. For which values of m and n, the pair $(m,n)$ are steakmaker, find the sum of $mn$

2020 Purple Comet Problems, 9

Find the number of positive integers less than or equal to $2020$ that are relatively prime to $588$.

2009 China Team Selection Test, 3

Let $ (a_{n})_{n\ge 1}$ be a sequence of positive integers satisfying $ (a_{m},a_{n}) = a_{(m,n)}$ (for all $ m,n\in N^ +$). Prove that for any $ n\in N^ + ,\prod_{d|n}{a_{d}^{\mu (\frac {n}{d})}}$ is an integer. where $ d|n$ denotes $ d$ take all positive divisors of $ n.$ Function $ \mu (n)$ is defined as follows: if $ n$ can be divided by square of certain prime number, then $ \mu (1) = 1;\mu (n) = 0$; if $ n$ can be expressed as product of $ k$ different prime numbers, then $ \mu (n) = ( - 1)^k.$

1999 Akdeniz University MO, 2

Prove that, we can't find positive numbers $m$ and $n$ such that, $$m^2+(m+1)^2=n^4+(n+1)^4$$