Found problems: 844
2002 Austria Beginners' Competition, 4
In a trapezoid $ABCD$ with base $AB$ let $E$ be the midpoint of side $AD$. Suppose further that $2CD=EC=BC=b$. Let $\angle ECB=120^{\circ}$. Construct the trapezoid and determine its area based on $b$.
2005 Gheorghe Vranceanu, 2
Let be a natural number $ n\ge 2 $ and a real number $ r>1. $ Determine the natural numbers $ k $ having the property that the affixes of $ r^ke^{\pi ki/n} ,r^{k+1}e^{\pi (k+1)i/n} ,r^{k+n}e^{\pi (k+n)i/n} ,r^{k+n+1}e^{\pi (k+n+1) i/n} $ in the complex plane represent the vertices of a trapezoid.
2007 Iran MO (3rd Round), 5
Let $ ABC$ be a triangle. Squares $ AB_{c}B_{a}C$, $ CA_{b}A_{c}B$ and $ BC_{a}C_{b}A$ are outside the triangle. Square $ B_{c}B_{c}'B_{a}'B_{a}$ with center $ P$ is outside square $ AB_{c}B_{a}C$. Prove that $ BP,C_{a}B_{a}$ and $ A_{c}B_{c}$ are concurrent.
2009 Belarus Team Selection Test, 2
Given trapezoid $ ABCD$ with parallel sides $ AB$ and $ CD$, assume that there exist points $ E$ on line $ BC$ outside segment $ BC$, and $ F$ inside segment $ AD$ such that $ \angle DAE \equal{} \angle CBF$. Denote by $ I$ the point of intersection of $ CD$ and $ EF$, and by $ J$ the point of intersection of $ AB$ and $ EF$. Let $ K$ be the midpoint of segment $ EF$, assume it does not lie on line $ AB$. Prove that $ I$ belongs to the circumcircle of $ ABK$ if and only if $ K$ belongs to the circumcircle of $ CDJ$.
[i]Proposed by Charles Leytem, Luxembourg[/i]
1988 Tournament Of Towns, (176) 2
Two isosceles trapezoids are inscribed in a circle in such a way that each side of each trapezoid is parallel to a certain side of the other trapezoid . Prove that the diagonals of one trapezoid are equal to the diagonals of the other.
2000 AMC 10, 5
Points $M$ and $N$ are the midpoints of sides $PA$ and $PB$ of $\triangle PAB$. As $P$ moves along a line that is parallel to side $AB$, how many of the four quantities listed below change?
$\mathrm{(A)}\ \text{the length of the segment} MN$
$\mathrm{(B)}\ \text{the perimeter of }\triangle PAB$
$\mathrm{(C)}\ \text{ the area of }\triangle PAB$
$\mathrm{(D)}\ \text{ the area of trapezoid} ABNM$
[asy]
draw((2,0)--(8,0)--(6,4)--cycle);
draw((4,2)--(7,2));
draw((1,4)--(9,4),Arrows);
label("$A$",(2,0),SW);
label("$B$",(8,0),SE);
label("$M$",(4,2),W);
label("$N$",(7,2),E);
label("$P$",(6,4),N);[/asy]
$\mathrm{(A)}\ 0 \qquad\mathrm{(B)}\ 1 \qquad\mathrm{(C)}\ 2 \qquad\mathrm{(D)}\ 3 \qquad\mathrm{(E)}\ 4$
2009 Hong Kong TST, 4
Two circles $ C_1,C_2$ with different radii are given in the plane, they touch each other externally at $ T$. Consider any points $ A\in C_1$ and $ B\in C_2$, both different from $ T$, such that $ \angle ATB \equal{} 90^{\circ}$.
(a) Show that all such lines $ AB$ are concurrent.
(b) Find the locus of midpoints of all such segments $ AB$.
2022-23 IOQM India, 3
In a trapezoid $ABCD$, the internal bisector of angle $A$ intersects the base $BC$(or its extension) at the point $E$. Inscribed in the triangle $ABE$ is a circle touching the side $AB$ at $M$ and side $BE$ at the point $P$. Find the angle $DAE$ in degrees, if $AB:MP=2$.
1993 Polish MO Finals, 2
A circle center $O$ is inscribed in the quadrilateral $ABCD$. $AB$ is parallel to and longer than $CD$ and has midpoint $M$. The line $OM$ meets $CD$ at $F$. $CD$ touches the circle at $E$. Show that $DE = CF$ iff $AB = 2CD$.
2018 Cyprus IMO TST, 2
Consider a trapezium $AB \Gamma \Delta$, where $A\Delta \parallel B\Gamma$ and $\measuredangle A = 120^{\circ}$. Let $E$ be the midpoint of $AB$ and let $O_1$ and $O_2$ be the circumcenters of triangles $AE \Delta$ and $BE\Gamma$, respectively. Prove that the area of the trapezium is equal to six time the area of the triangle $O_1 E O_2$.
Novosibirsk Oral Geo Oly IX, 2017.6
In trapezoid $ABCD$, diagonal $AC$ is the bisector of angle $A$. Point $K$ is the midpoint of diagonal $AC$. It is known that $DC = DK$. Find the ratio of the bases $AD: BC$.
1986 Tournament Of Towns, (126) 1
We are given trapezoid $ABCD$ and point $M$ on the intersection of its diagonals. The parallel sides are $AD$ and $BC$ and it is known that $AB$ is perpendicular to $AD$ and that the trapezoid can have an inscribed circle. If the radius of this inscribed circle is $R$ find the area of triangle $DCM$ .
2007 Princeton University Math Competition, 10
In triangle $ABC$ with $AB \neq AC$, points $N \in CA$, $M \in AB$, $P \in BC$, and $Q \in BC$ are chosen such that $MP \parallel AC$, $NQ \parallel AB$, $\frac{BP}{AB} = \frac{CQ}{AC}$, and $A, M, Q, P, N$ are concyclic. Find $\angle BAC$.
2002 All-Russian Olympiad, 2
A quadrilateral $ABCD$ is inscribed in a circle $\omega$. The tangent to $\omega$ at $A$ intersects the ray $CB$ at $K$, and the tangent to $\omega$ at $B$ intersects the ray $DA$ at $M$. Prove that if $AM=AD$ and $BK=BC$, then $ABCD$ is a trapezoid.
1999 National Olympiad First Round, 29
The length of the altitude of equilateral triangle $ ABC$ is $3$. A circle with radius $2$, which is tangent to $ \left[BC\right]$ at its midpoint, meets other two sides. If the circle meets $ AB$ and $ AC$ at $ D$ and $ E$, at the outer of $\triangle ABC$ , find the ratio $ \frac {Area\, \left(ABC\right)}{Area\, \left(ADE\right)}$.
$\textbf{(A)}\ 2\left(5 \plus{} \sqrt {3} \right) \qquad\textbf{(B)}\ 7\sqrt {2} \qquad\textbf{(C)}\ 5\sqrt {3} \\ \qquad\textbf{(D)}\ 2\left(3 \plus{} \sqrt {5} \right) \qquad\textbf{(E)}\ 2\left(\sqrt {3} \plus{} \sqrt {5} \right)$
2014 France Team Selection Test, 2
Two circles $O_1$ and $O_2$ intersect each other at $M$ and $N$. The common tangent to two circles nearer to $M$ touch $O_1$ and $O_2$ at $A$ and $B$ respectively. Let $C$ and $D$ be the reflection of $A$ and $B$ respectively with respect to $M$. The circumcircle of the triangle $DCM$ intersect circles $O_1$ and $O_2$ respectively at points $E$ and $F$ (both distinct from $M$). Show that the circumcircles of triangles $MEF$ and $NEF$ have same radius length.
2011 Balkan MO, 1
Let $ABCD$ be a cyclic quadrilateral which is not a trapezoid and whose diagonals meet at $E$. The midpoints of $AB$ and $CD$ are $F$ and $G$ respectively, and $\ell$ is the line through $G$ parallel to $AB$. The feet of the perpendiculars from E onto the lines $\ell$ and $CD$ are $H$ and $K$, respectively. Prove that the lines $EF$ and $HK$ are perpendicular.
2016 Regional Olympiad of Mexico Southeast, 2
Let $ABCD$ a trapezium with $AB$ parallel to $CD, \Omega$ the circumcircle of $ABCD$ and $A_1,B_1$ points on segments $AC$ and $BC$ respectively, such that $DA_1B_1C$ is a cyclic cuadrilateral. Let $A_2$ and $B_2$ the symmetric points of $A_1$ and $B_1$ with respect of the midpoint of $AC$ and $BC$, respectively. Prove that points $A, B, A_2, B_2$ are concyclic.
1971 Dutch Mathematical Olympiad, 1
Given a trapezoid $ABCD$, where sides $AB$ and $CD$ are parallel; the points $P$ on $AD$ and $Q$ on $BC$ lie such that the lines $AQ$ and $CP$ are parallel. Prove that lines $PB$ and $DQ$ are parallel.
2011 IberoAmerican, 3
Let $ABC$ be a triangle and $X,Y,Z$ be the tangency points of its inscribed circle with the sides $BC, CA, AB$, respectively. Suppose that $C_1, C_2, C_3$ are circle with chords $YZ, ZX, XY$, respectively, such that $C_1$ and $C_2$ intersect on the line $CZ$ and that $C_1$ and $C_3$ intersect on the line $BY$. Suppose that $C_1$ intersects the chords $XY$ and $ZX$ at $J$ and $M$, respectively; that $C_2$ intersects the chords $YZ$ and $XY$ at $L$ and $I$, respectively; and that $C_3$ intersects the chords $YZ$ and $ZX$ at $K$ and $N$, respectively. Show that $I, J, K, L, M, N$ lie on the same circle.
1996 AMC 8, 22
The horizontal and vertical distances between adjacent points equal $1$ unit. The area of triangle $ABC$ is
[asy]
for (int a = 0; a < 5; ++a)
{
for (int b = 0; b < 4; ++b)
{
dot((a,b));
}
}
draw((0,0)--(3,2)--(4,3)--cycle);
label("$A$",(0,0),SW);
label("$B$",(3,2),SE);
label("$C$",(4,3),NE);
[/asy]
$\text{(A)}\ 1/4 \qquad \text{(B)}\ 1/2 \qquad \text{(C)}\ 3/4 \qquad \text{(D)}\ 1 \qquad \text{(E)}\ 5/4$
2014 Stanford Mathematics Tournament, 5
Let $ABC$ be a triangle where $\angle BAC = 30^\circ$. Construct $D$ in $\triangle ABC$ such that $\angle ABD =
\angle ACD = 30^\circ$. Let the circumcircle of $\triangle ABD$ intersect $AC$ at $X$. Let the circumcircle of $\triangle ACD$ intersect $AB$ at $Y$. Given that $DB - DC = 10$ and $BC = 20$, find $AX \cdot AY$.
2008 Kyiv Mathematical Festival, 4
Let $ K,L,M$ and $ N$ be the midpoints of sides $ AB,$ $ BC,$ $ CD$ and $ AD$ of the convex quadrangle $ ABCD.$ Is it possible that points $ A,B,L,M,D$ lie on the same circle and points $ K,B,C,D,N$ lie on the same circle?
1955 Kurschak Competition, 1
Prove that if the two angles on the base of a trapezoid are different, then the diagonal starting from the smaller angle is longer than the other diagonal.
[img]https://cdn.artofproblemsolving.com/attachments/7/1/77cf4958931df1c852c347158ff1e2bbcf45fd.png[/img]
2010 Contests, 3
$ABCD$ is a parallelogram in which angle $DAB$ is acute. Points $A, P, B, D$ lie on one circle in exactly this order. Lines $AP$ and $CD$ intersect in $Q$. Point $O$ is the circumcenter of the triangle $CPQ$. Prove that if $D \neq O$ then the lines $AD$ and $DO$ are perpendicular.