Found problems: 15460
2001 Estonia National Olympiad, 2
Dividing a three-digit number by the number obtained from it by swapping its first and last digit we get $3$ as the quotient and the sum of digits of the original number as the remainder. Find all three-digit numbers with this property.
2022 Bundeswettbewerb Mathematik, 1
Five squirrels together have a supply of 2022 nuts. On the first day 2 nuts are added, on the second day 4 nuts, on the third day 6 nuts and so on, i.e. on each further day 2 nuts more are added than on the day before.
At the end of any day the squirrels divide the stock among themselves. Is it possible that they all receive the same number of nuts and that no nut is left over?
2023 CMWMC, R2
[b]p4.[/b] What is gcd $(2^6 - 1, 2^9 - 1)$?
[b]p5.[/b] Sarah is walking along a sidewalk at a leisurely speed of $\frac12$ m/s. Annie is some distance behind her, walking in the same direction at a faster speed of $s$ m/s. What is the minimum value of $s$ such that Sarah and Annie spend no more than one second within one meter of each other?
[b]p6.[/b] You have a choice to play one of two games. In both games, a coin is flipped four times. In game $1$, if (at least) two flips land heads, you win. In game $2$, if (at least) two consecutive flips land heads, you win. Let $N$ be the number of the game that gives you a better chance of winning, and let $p$ be the absolute difference in the probabilities of winning each game. Find $N + p$.
PS. You should use hide for answers.
2018 BmMT, Ind. Round
[b]p1.[/b] If $x$ is a real number that satisfies $\frac{48}{x} = 16$, find the value of $x$.
[b]p2.[/b] If $ABC$ is a right triangle with hypotenuse $BC$ such that $\angle ABC = 35^o$, what is $\angle BCA$ in degrees?
[img]https://cdn.artofproblemsolving.com/attachments/a/b/0f83dc34fb7934281e0e3f988ac34f653cc3f1.png[/img]
[b]p3.[/b] If $a\vartriangle b = a + b - ab$, find $4\vartriangle 9$.
[b]p4.[/b] Grizzly is $6$ feet tall. He measures his shadow to be $4$ feet long. At the same time, his friend Panda helps him measure the shadow of a nearby lamp post, and it is $6$ feet long. How tall is the lamp post in feet?
[b]p5.[/b] Jerry is currently twice as old as Tom was $7$ years ago. Tom is $6$ years younger than Jerry. How many years old is Tom?
[b]p6.[/b] Out of the $10, 000$ possible four-digit passcodes on a phone, how many of them contain only prime digits?
[b]p7.[/b] It started snowing, which means Moor needs to buy snow shoes for his $6$ cows and $7$ sky bison. A cow has $4$ legs, and a sky bison has $6$ legs. If Moor has 36 snow shoes already, how many more shoes does he need to buy? Assume cows and sky bison wear the same type of shoe and each leg gets one shoe.
[b]p8.[/b] How many integers $n$ with $1 \le n \le 100$ have exactly $3$ positive divisors?
[b]p9.[/b] James has three $3$ candies and $3$ green candies. $3$ people come in and each randomly take $2$ candies. What is the probability that no one got $2$ candies of the same color? Express your answer as a decimal or a fraction in lowest terms.
[b]p10.[/b] When Box flips a strange coin, the coin can land heads, tails, or on the side. It has a $\frac{1}{10}$probability of landing on the side, and the probability of landing heads equals the probability of landing tails. If Box flips a strange coin $3$ times, what is the probability that the number of heads flipped is equal to the number of tails flipped? Express your answer as a decimal or a fraction in lowest terms.
[b]p11.[/b] James is travelling on a river. His canoe goes $4$ miles per hour upstream and $6$ miles per hour downstream. He travels $8$ miles upstream and then $8$ miles downstream (to where he started). What is his average speed, in miles per hour? Express your answer as a decimal or a fraction in lowest terms.
[b]p12.[/b] Four boxes of cookies and one bag of chips cost exactly $1000$ jelly beans. Five bags of chips and one box of cookies cost less than $1000$ jelly beans. If both chips and cookies cost a whole number of jelly beans, what is the maximum possible cost of a bag of chips?
[b]p13.[/b] June is making a pumpkin pie, which takes the shape of a truncated cone, as shown below. The pie tin is $18$ inches wide at the top, $16$ inches wide at the bottom, and $1$ inch high. How many cubic inches of pumpkin filling are needed to fill the pie?
[img]https://cdn.artofproblemsolving.com/attachments/7/0/22c38dd6bc42d15ad9352817b25143f0e4729b.png[/img]
[b]p14.[/b] For two real numbers $a$ and $b$, let $a\# b = ab - 2a - 2b + 6$. Find a positive real number $x$ such that $(x\#7) \#x = 82$.
[b]p15.[/b] Find the sum of all positive integers $n$ such that $\frac{n^2 + 20n + 51}{n^2 + 4n + 3}$ is an integer.
[b]p16.[/b] Let $ABC$ be a right triangle with hypotenuse $AB$ such that $AC = 36$ and $BC = 15$. A semicircle is inscribed in $ABC$ as shown, such that the diameter $XC$ of the semicircle lies on side $AC$ and that the semicircle is tangent to $AB$. What is the radius of the semicircle?
[img]https://cdn.artofproblemsolving.com/attachments/4/2/714f7dfd09f6da1d61a8f910b5052e60dcd2fb.png[/img]
[b]p17.[/b] Let $a$ and $b$ be relatively prime positive integers such that the product $ab$ is equal to the least common multiple of $16500$ and $990$. If $\frac{16500}{a}$ and $\frac{990}{b}$ are both integers, what is the minimum value of $a + b$?
[b]p18.[/b] Let $x$ be a positive real number so that $x - \frac{1}{x} = 1$. Compute $x^8 - \frac{1}{x^8}$ .
[b]p19.[/b] Six people sit around a round table. Each person rolls a standard $6$-sided die. If no two people sitting next to each other rolled the same number, we will say that the roll is valid. How many dierent rolls are valid?
[b]p20.[/b] Given that $\frac{1}{31} = 0.\overline{a_1a_2a_3a_4a_5... a_n}$ (that is, $\frac{1}{31}$ can be written as the repeating decimal expansion $0.a_1a_2... a_na_1a_2... a_na_1a_2...$ ), what is the minimum value of $n$?
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2014 China Girls Math Olympiad, 8
Let $n$ be a positive integer, and set $S$ be the set of all integers in $\{1,2,\dots,n\}$ which are relatively prime to $n$.
Set $S_1 = S \cap \left(0, \frac n3 \right]$, $S_2 = S \cap \left( \frac n3, \frac {2n}3 \right]$, $S_3 = S \cap \left( \frac{2n}{3}, n \right]$.
If the cardinality of $S$ is a multiple of $3$, prove that $S_1$, $S_2$, $S_3$ have the same cardinality.
2018 CHMMC (Fall), 7
For a positive number $n$, let $g(n)$ be the product of all $1 \le k \le n$ such that gcd $(k, n) =1$, and say that $n > 1$ is reckless if $n$ is odd and $g(n) \equiv -1$ (mod $n$). Find the number of reckless numbers less than $50$.
2009 Postal Coaching, 1
Let $n \ge 1$ be an integer. Prove that there exists a set $S$ of $n$ positive integers with the following property:
if $A$ and $B$ are any two distinct non-empty subsets of $S$, then the averages $\frac{P_{x\in A} x}{|A|}$ and $\frac{P_{x\in B} x}{|B|}$ are two relatively prime composite integers.
2010 Belarus Team Selection Test, 7.1
Find the smallest value of the expression $|3 \cdot 5^m - 11 \cdot 13^n|$ for all $m,n \in N$.
(Folklore)
MMPC Part II 1996 - 2019, 2017
[b]p1.[/b] Consider a normal $8 \times 8$ chessboard, where each square is labelled with either $1$ or $-1$. Let $a_k$ be the product of the numbers in the $k$th row, and let $b_k$ be the product of the numbers in the $k$th column. Find, with proof, all possible values of $\sum^8_{k=1}(a_kb_k)$.
[b]p2.[/b] Let $\overline{AB}$ be a line segment with $AB = 1$, and $P$ be a point on $\overline{AB}$ with $AP = x$, for some $0 < x < 1$. Draw circles $C_1$ and $C_2$ with $\overline{AP}$, $\overline{PB}$ as diameters, respectively. Let $\overline{AB_1}$, $\overline{AB_2}$ be tangent to $C_2$ at $B_1$ and $B_2$, and let $\overline{BA_1}$;$\overline{BA_2}$ be tangent to $C_1$ at $A_1$ and $A_2$. Now $C_3$ is a circle tangent to $C_2$, $\overline{AB_1}$, and $\overline{AB_2}$; $C_4$ is a circle tangent to $C_1$, $\overline{BA_1}$, and $\overline{BA_2}$.
(a) Express the radius of $C_3$ as a function of $x$.
(b) Prove that $C_3$ and $C_4$ are congruent.
[img]https://cdn.artofproblemsolving.com/attachments/c/a/fd28ad91ed0a4893608b92f5ccbd01088ae424.png[/img]
[b]p3.[/b] Suppose that the graphs of $y = (x + a)^2$ and $x = (y + a)^2$ are tangent to one another at a point on the line $y = x$. Find all possible values of $a$.
[b]p4.[/b] You may assume without proof or justification that the infinite radical expressions $\sqrt{a-\sqrt{a-\sqrt{a-\sqrt{a-...}}}}$ and $\sqrt{a-\sqrt{a+\sqrt{a-\sqrt{a+...}}}}$ represent unique values for $a > 2$.
(a) Find a real number $a$ such that $$\sqrt{a-\sqrt{a-\sqrt{a-\sqrt{a+...}}}}= 2017$$
(b) Show that
$$\sqrt{2018-\sqrt{2018+\sqrt{2018-\sqrt{2018+...}}}}=\sqrt{2017-\sqrt{2017-\sqrt{2017-\sqrt{2017-...}}}}$$
[b]p5.[/b] (a) Suppose that $m, n$ are positive integers such that $7n^2 - m^2 > 0$. Prove that, in fact, $7n^2 - m^2 \ge 3$.
(b) Suppose that $m, n$ are positive integers such that $\frac{m}{n} <\sqrt7$. Prove that, in fact, $\frac{m}{n}+\frac{1}{mn}
<\sqrt7$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2024 India IMOTC, 17
Fix a positive integer $a > 1$. Consider triples $(f(x), g(x), h(x))$ of polynomials with integer coefficients, such that
1. $f$ is a monic polynomial with $\deg f \ge 1$.
2. There exists a positive integer $N$ such that $g(x)>0$ for $x \ge N$ and for all positive integers $n \ge N$, we have $f(n) \mid a^{g(n)} + h(n)$.
Find all such possible triples.
[i]Proposed by Mainak Ghosh and Rijul Saini[/i]
Mid-Michigan MO, Grades 10-12, 2006
[b]p1.[/b] A right triangle has hypotenuse of length $12$ cm. The height corresponding to the right angle has length $7$ cm. Is this possible?
[img]https://cdn.artofproblemsolving.com/attachments/0/e/3a0c82dc59097b814a68e1063a8570358222a6.png[/img]
[b]p2.[/b] Prove that from any $5$ integers one can choose $3$ such that their sum is divisible by $3$.
[b]p3.[/b] Two players play the following game on an $8\times 8$ chessboard. The first player can put a knight on an arbitrary square. Then the second player can put another knight on a free square that is not controlled by the first knight. Then the first player can put a new knight on a free square that is not controlled by the knights on the board. Then the second player can do the same, etc. A player who cannot put a new knight on the board loses the game. Who has a winning strategy?
[b]p4.[/b] Consider a regular octagon $ABCDEGH$ (i.e., all sides of the octagon are equal and all angles of the octagon are equal). Show that the area of the rectangle $ABEF$ is one half of the area of the octagon.
[img]https://cdn.artofproblemsolving.com/attachments/d/1/674034f0b045c0bcde3d03172b01aae337fba7.png[/img]
[b]p5.[/b] Can you find a positive whole number such that after deleting the first digit and the zeros following it (if they are) the number becomes $24$ times smaller?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1998 Brazil National Olympiad, 1
15 positive integers, all less than 1998(and no one equal to 1), are relatively prime (no pair has a common factor > 1).
Show that at least one of them must be prime.
2013 Dutch BxMO/EGMO TST, 2
Consider a triple $(a, b, c)$ of pairwise distinct positive integers satisfying $a + b + c = 2013$. A step consists of replacing the triple $(x, y, z)$ by the triple $(y + z - x,z + x - y,x + y - z)$. Prove that, starting from the given triple $(a, b,c)$, after $10$ steps we obtain a triple containing at least one negative number.
2003 Canada National Olympiad, 2
Find the last three digits of the number $2003^{{2002}^{2001}}$.
2017 Switzerland - Final Round, 7
Let $n$ be a natural number such that there are exactly$ 2017$ distinct pairs of natural numbers $(a, b)$,
which the equation $$\frac{1}{a}+\frac{1}{b}=\frac{1}{n}$$ fulfilld. Show that $n$ is a perfect square .
Remark: $(7, 4) \ne (4, 7)$
1991 China Team Selection Test, 2
Let $f$ be a function $f: \mathbb{N} \cup \{0\} \mapsto \mathbb{N},$ and satisfies the following conditions:
(1) $f(0) = 0, f(1) = 1,$
(2) $f(n+2) = 23 \cdot f(n+1) + f(n), n = 0,1, \ldots.$
Prove that for any $m \in \mathbb{N}$, there exist a $d \in \mathbb{N}$ such that $m | f(f(n)) \Leftrightarrow d | n.$
2010 APMO, 2
For a positive integer $k,$ call an integer a $pure$ $k-th$ $power$ if it can be represented as $m^k$ for some integer $m.$ Show that for every positive integer $n,$ there exists $n$ distinct positive integers such that their sum is a pure $2009-$th power and their product is a pure $2010-$th power.
2005 AIME Problems, 2
For each positive integer $k$, let $S_k$ denote the increasing arithmetic sequence of integers whose first term is $1$ and whose common difference is $k$. For example, $S_3$ is the sequence $1,4,7,10,...$. For how many values of $k$ does $S_k$ contain the term $2005$?
V Soros Olympiad 1998 - 99 (Russia), 9.2
As evidence that the correct answer does not mean the correctness of the proof, the teacher cited next example. Let's take the fraction $\frac{19}{95}$. After crossing out $9$ in the numerator and denominator (“reduction” by $9$), we get $\frac{1}{5}$ which is the correct answer. In the same way, a fraction $\frac{1999}{9995}$ can be “reduced” by three nines (cross out $999$ in the numerator and denominator).
Is it possible that as a result of such a “reduction” we also get the correct answer, equal to $\frac13$ ? (We consider fractions of the form $\frac{1a}{a3}$. Here, with the letter $a$ we denote several numbers that follow in the same order in the numerator after $1$, and in the denominator before $3$. “Reduce” by $a$.)
1989 Mexico National Olympiad, 2
Find two positive integers $a,b$ such that $a | b^2, b^2 | a^3, a^3 | b^4, b^4 | a^5$, but $a^5$ does not divide $b^6$
2019 Azerbaijan IMO TST, 3
Four positive integers $x,y,z$ and $t$ satisfy the relations
\[ xy - zt = x + y = z + t. \]
Is it possible that both $xy$ and $zt$ are perfect squares?
2017 ITAMO, 2
Let $n\geq 2$ be an integer. Consider the solutions of the system
$$\begin{cases}
n=a+b-c \\
n=a^2+b^2-c^2
\end{cases}$$
where $a,b,c$ are integers. Show that there is at least one solution and that the solutions are finitely many.
2015 Baltic Way, 10
A subset $S$ of $ {1,2,...,n}$ is called balanced if for every $a $ from $S $ there exists some $ b $from $S$, $b\neq a$, such that $ \frac{(a+b)}{2}$ is in $S$ as well.
(a) Let $k > 1 $be an integer and let $n = 2k$. Show that every subset $ S$ of ${1,2,...,n} $ with $|S| > \frac{3n}{4}$ is balanced.
(b) Does there exist an $n =2k$, with $ k > 1 $ an integer, for which every subset $ S$ of ${1,2,...,n} $ with $ |S| >\frac{2n}{3} $ is balanced?
1973 Bundeswettbewerb Mathematik, 2
We work in the decimal system and the following operations are allowed to be done with a positive integer:
a) append $4$ at the end of the number.
b) append $0$ at the end of the number.
c) divide the number by $2$ if it's even.
Show that starting with $4$, we can reach every positive integer by a finite number of these operations
2001 Slovenia National Olympiad, Problem 1
None of the positive integers $k,m,n$ are divisible by $5$. Prove that at least one of the numbers $k^2-m^2,m^2-n^2,n^2-k^2$ is divisible by $5$.