This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

1969 IMO Shortlist, 7

$(BUL 1)$ Prove that the equation $\sqrt{x^3 + y^3 + z^3}=1969$ has no integral solutions.

2011 All-Russian Olympiad Regional Round, 10.5

Find all $a$ such that for any positive integer $n$, the number $an(n+2)(n+3)(n+4)$ is an integer. (Author: O. Podlipski) [url=http://www.artofproblemsolving.com/Forum/viewtopic.php?f=57&t=427802](similar to Problem 5 of grade 9)[/url] Same problem for grades 10 and 11

2012 Baltic Way, 16

Let $n$, $m$, and $k$ be positive integers satisfying $(n - 1)n(n + 1) = m^k$. Prove that $k = 1$.

1990 IMO Longlists, 37

An eccentric mathematician has a ladder with $ n$ rungs that he always ascends and descends in the following way: When he ascends, each step he takes covers $ a$ rungs of the ladder, and when he descends, each step he takes covers $ b$ rungs of the ladder, where $ a$ and $ b$ are fixed positive integers. By a sequence of ascending and descending steps he can climb from ground level to the top rung of the ladder and come back down to ground level again. Find, with proof, the minimum value of $ n,$ expressed in terms of $ a$ and $ b.$

2019 Balkan MO Shortlist, N2

Let $S \subset \{ 1, \dots, n \}$ be a nonempty set, where $n$ is a positive integer. We denote by $s$ the greatest common divisor of the elements of the set $S$. We assume that $s \not= 1$ and let $d$ be its smallest divisor greater than $1$. Let $T \subset \{ 1, \dots, n \}$ be a set such that $S \subset T$ and $|T| \ge 1 + \left[ \frac{n}{d} \right]$. Prove that the greatest common divisor of the elements in $T$ is $1$. ----------- [Second Version] Let $n(n \ge 1)$ be a positive integer and $U = \{ 1, \dots, n \}$. Let $S$ be a nonempty subset of $U$ and let $d (d \not= 1)$ be the smallest common divisor of all elements of the set $S$. Find the smallest positive integer $k$ such that for any subset $T$ of $U$, consisting of $k$ elements, with $S \subset T$, the greatest common divisor of all elements of $T$ is equal to $1$.

1997 South africa National Olympiad, 2

Find all natural numbers with the property that, when the first digit is moved to the end, the resulting number is $\dfrac{7}{2}$ times the original one.

2017 Saudi Arabia JBMO TST, 2

A positive integer $k > 1$ is called nice if for any pair $(m, n)$ of positive integers satisfying the condition $kn + m | km + n$ we have $n | m$. 1. Prove that $5$ is a nice number. 2. Find all the nice numbers.

2024 Thailand October Camp, 3

Recall that for an arbitrary prime $p$, we define a [b]primitive root[/b] modulo $p$ as an integer $r$ for which the least positive integer $v$ such that $r^{v}\equiv 1\pmod{p}$ is $p-1$.\\ Prove or disprove the following statement: [center] For every prime $p>2023$, there exists positive integers $1\leqslant a<b<c<p$\\ such that $a,b$ and $c$ are primitive roots modulo $p$ but $abc$ is not a primitive root modulo $p$. [/center]

1980 Austrian-Polish Competition, 2

A sequence of integers $1 = x_1 < x_2 < x_3 <...$ satisfies $x_{n+1} \le 2n$ for all $n$. Show that every positive integer $k$ can be written as $x_j -x_i$ for some $i, j$.

2023 Pan-African, 2

Find all positive integers $m$ and $n$ with no common divisor greater than 1 such that $m^3 + n^3$ divides $m^2 + 20mn + n^2$. [i](Professor Yongjin Song)[/i]

2015 India IMO Training Camp, 1

Let $n \ge 2$ be an integer, and let $A_n$ be the set \[A_n = \{2^n - 2^k\mid k \in \mathbb{Z},\, 0 \le k < n\}.\] Determine the largest positive integer that cannot be written as the sum of one or more (not necessarily distinct) elements of $A_n$ . [i]Proposed by Serbia[/i]

2022 Thailand TST, 1

Find all positive integers $n$ with the following property: the $k$ positive divisors of $n$ have a permutation $(d_1,d_2,\ldots,d_k)$ such that for $i=1,2,\ldots,k$, the number $d_1+d_2+\cdots+d_i$ is a perfect square.

2012 Cono Sur Olympiad, 3

3. Show that there do not exist positive integers $a$, $b$, $c$ and $d$, pairwise co-prime, such that $ab+cd$, $ac+bd$ and $ad+bc$ are odd divisors of the number $(a+b-c-d)(a-b+c-d)(a-b-c+d)$.

2019 Hanoi Open Mathematics Competitions, 10

For any positive integer $n$, let $r_n$ denote the greatest odd divisor of $n$. Compute $T =r_{100}+ r_{101} + r_{102}+...+r_{200}$

2021 Kazakhstan National Olympiad, 5

Let $a$ be a positive integer. Prove that for any pair $(x,y)$ of integer solutions of equation $$x(y^2-2x^2)+x+y+a=0$$ we have: $$|x| \leqslant a+\sqrt{2a^2+2}$$

2008 Swedish Mathematical Competition, 2

Determine the smallest integer $n \ge 3$ with the property that you can choose two of the numbers $1,2,\dots, n$ in such a way that their product is equal to the sum of the other $n - 2$ languages. What are the two numbers?

2016 PUMaC Individual Finals B, 3

Let $m, k$, and $c$ be positive integers with $k > c$, and let $\lambda$ be a positive, non-integer real root of the equation $\lambda^{m+1} - k \lambda^m - c = 0$. Let $f : Z^+ \to Z$ be defined by $f(n) = \lfloor \lambda n \rfloor$ for all $n \in Z^+$. Show that $f^{m+1}(n) \equiv cn - 1$ (mod $k$) for all $n \in Z^+$. (Here, $Z^+$ denotes the set of positive integers, $ \lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$, and $f^{m+1}(n) = f(f(... f(n)...))$ where $f$ appears $m + 1$ times.)

1990 Tournament Of Towns, (265) 3

Find $10$ different positive integers such that each of them is a divisor of their sum (S Fomin, Leningrad)

2010 Abels Math Contest (Norwegian MO) Final, 4a

Find all positive integers $k$ and $\ell$ such that $k^2 -\ell^2 = 1005$.

1994 BMO TST – Romania, 1:

Prove that if $n$ is a square-free positive integer, there are no coprime positive integers $x$ and $y$ such that $(x + y)^3$ divides $x^n+y^n$

2018 Mediterranean Mathematics OIympiad, 3

An integer $a\ge1$ is called [i]Aegean[/i], if none of the numbers $a^{n+2}+3a^n+1$ with $n\ge1$ is prime. Prove that there are at least 500 Aegean integers in the set $\{1,2,\ldots,2018\}$. (Proposed by Gerhard Woeginger, Austria)

2004 Thailand Mathematical Olympiad, 5

Find all primes $p$ such that $p^2 + 2543$ has at most $16$ divisors.

2003 Portugal MO, 6

Given six irrational numbers, will it be possible to choose three such that the sum of any two of these three is irrational?

2009 Paraguay Mathematical Olympiad, 3

Find out how many positive integers $n$ not larger than $2009$ exist such that the last digit of $n^{20}$ is $1$.

1994 IMO Shortlist, 4

Define the sequences $ a_n, b_n, c_n$ as follows. $ a_0 \equal{} k, b_0 \equal{} 4, c_0 \equal{} 1$. If $ a_n$ is even then $ a_{n \plus{} 1} \equal{} \frac {a_n}{2}$, $ b_{n \plus{} 1} \equal{} 2b_n$, $ c_{n \plus{} 1} \equal{} c_n$. If $ a_n$ is odd, then $ a_{n \plus{} 1} \equal{} a_n \minus{} \frac {b_n}{2} \minus{} c_n$, $ b_{n \plus{} 1} \equal{} b_n$, $ c_{n \plus{} 1} \equal{} b_n \plus{} c_n$. Find the number of positive integers $ k < 1995$ such that some $ a_n \equal{} 0$.