This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2007 Thailand Mathematical Olympiad, 17

Compute the product of positive integers $n$ such that $n^2 + 59n + 881$ is a perfect square.

2024 JHMT HS, 7

Let $N_6$ be the answer to problem 6. Given positive integers $n$ and $a$, the $n$[i]th tetration of[/i] $a$ is defined as \[ ^{n}a=\underbrace{a^{a^{\cdot^{\cdot^{\cdot^a}}}}}_{n \text{ times}}. \] For example, $^{4}2=2^{2^{2^2}}=2^{2^4}=2^{16}=65536$. Compute the units digit of $^{2024}N_6$.

1991 Turkey Team Selection Test, 2

Show that the equation $a^2+b^2+c^2+d^2=a^2\cdot b^2\cdot c^2\cdot d^2$ has no solution in positive integers.

2014 Kazakhstan National Olympiad, 2

Do there exist positive integers $a$ and $b$ such that $a^n+n^b$ and $b^n+n^a$ are relatively prime for all natural $n$?

2020 Korean MO winter camp, #6

Find all strictly increasing sequences $\{a_n\}_{n=0}^\infty$ of positive integers such that for all positive integers $k,m,n$ $$\frac{a_{n+1} +a_{n+2} +\dots +a_{n+k}}{k+m}$$ is not an integer larger than $2020$.

2015 Kazakhstan National Olympiad, 4

$P_k(n) $ is the product of all positive divisors of $n$ that are divisible by $k$ (the empty product is equal to $1$). Show that $P_1(n)P_2(n)\cdots P_n(n)$ is a perfect square, for any positive integer $n$.

2006 Singapore Junior Math Olympiad, 2

The fraction $\frac23$ can be eypressed as a sum of two distinct unit fractions: $\frac12 + \frac16$ . Show that the fraction $\frac{p-1}{p}$ where $p\ge 5$ is a prime cannot be expressed as a sum of two distinct unit fractions.

2015 District Olympiad, 1

[b]a)[/b] Solve the equation $ x^2-x+2\equiv 0\pmod 7. $ [b]b)[/b] Determine the natural numbers $ n\ge 2 $ for which the equation $ x^2-x+2\equiv 0\pmod n $ has an unique solution modulo $ n. $

1962 Polish MO Finals, 5

Prove that if $ n $ is a natural number greater than $ 2 $, then $$\sqrt[n + 1]{n+1} < \sqrt[n]{n}.$$

2015 Middle European Mathematical Olympiad, 4

Find all pairs of positive integers $(m,n)$ for which there exist relatively prime integers $a$ and $b$ greater than $1$ such that $$\frac{a^m+b^m}{a^n+b^n}$$ is an integer.

1979 Poland - Second Round, 5

Prove that among every ten consecutive natural numbers there is one that is coprime to each of the other nine.

2020 Vietnam National Olympiad, 3

Let a sequence $(a_n)$ satisfy: $a_1=5,a_2=13$ and $a_{n+1}=5a_n-6a_{n-1},\forall n\ge2$ a) Prove that $(a_n, a_{n+1})=1,\forall n\ge1$ b) Prove that: $2^{k+1}|p-1\forall k\in\mathbb{N}$, if p is a prime factor of $a_{2^k}$

2004 China Team Selection Test, 3

Find all positive integer $ m$ if there exists prime number $ p$ such that $ n^m\minus{}m$ can not be divided by $ p$ for any integer $ n$.

2006 Baltic Way, 19

Does there exist a sequence $a_1,a_2,a_3,\ldots $ of positive integers such that the sum of every $n$ consecutive elements is divisible by $n^2$ for every positive integer $n$?

2018 Belarus Team Selection Test, 1.1

Let $A=2^7(7^{14}+1)+2^6\cdot 7^{11}\cdot 10^2+2^6\cdot 7^7\cdot 10^{4}+2^4\cdot 7^3\cdot 10^6$. Prove that the number $A$ ends with $14$ zeros. [i](I. Gorodnin)[/i]

2004 IMO Shortlist, 3

Find all functions $ f: \mathbb{N^{*}}\to \mathbb{N^{*}}$ satisfying \[ \left(f^{2}\left(m\right)+f\left(n\right)\right) \mid \left(m^{2}+n\right)^{2}\] for any two positive integers $ m$ and $ n$. [i]Remark.[/i] The abbreviation $ \mathbb{N^{*}}$ stands for the set of all positive integers: $ \mathbb{N^{*}}=\left\{1,2,3,...\right\}$. By $ f^{2}\left(m\right)$, we mean $ \left(f\left(m\right)\right)^{2}$ (and not $ f\left(f\left(m\right)\right)$). [i]Proposed by Mohsen Jamali, Iran[/i]

Bangladesh Mathematical Olympiad 2020 Final, #7

Tiham is trying to find [b]6[/b] digit positive integers$ PQRSTU$ (where $PQRSTU $are not necessarily distinct). But he only wants the numbers where the sum of the [b]3[/b] digit number$ PQR$, and the [b]3[/b] digit number $STU$ is divisible by [b]37[/b]. How many such numbers Tiham can find?

1988 USAMO, 1

By a [i]pure repeating decimal[/i] (in base $10$), we mean a decimal $0.\overline{a_1\cdots a_k}$ which repeats in blocks of $k$ digits beginning at the decimal point. An example is $.243243243\cdots = \tfrac{9}{37}$. By a [i]mixed repeating decimal[/i] we mean a decimal $0.b_1\cdots b_m\overline{a_1\cdots a_k}$ which eventually repeats, but which cannot be reduced to a pure repeating decimal. An example is $.011363636\cdots = \tfrac{1}{88}$. Prove that if a mixed repeating decimal is written as a fraction $\tfrac pq$ in lowest terms, then the denominator $q$ is divisible by $2$ or $5$ or both.

2019 Swedish Mathematical Competition, 6

Is there an infinite sequence of positive integers $\{a_n\}_{n = 1}^{\infty}$ which contains each positive integer exactly once and is such that the number $a_n + a_{n + 1} $ is a perfect square for each $n$?

2022 Nordic, 3

Anton and Britta play a game with the set $M=\left \{ 1,2,\dots,n-1 \right \}$ where $n \geq 5$ is an odd integer. In each step Anton removes a number from $M$ and puts it in his set $A$, and Britta removes a number from $M$ and puts it in her set $B$ (both $A$ and $B$ are empty to begin with). When $M$ is empty, Anton picks two distinct numbers $x_1, x_2$ from $A$ and shows them to Britta. Britta then picks two distinct numbers $y_1, y_2$ from $B$. Britta wins if $(x_1x_2(x_1-y_1)(x_2-y_2))^{\frac{n-1}{2}}\equiv 1\mod n$ otherwise Anton wins. Find all $n$ for which Britta has a winning strategy.

2012 Mid-Michigan MO, 10-12

[b]p1.[/b] A triangle $ABC$ is drawn in the plane. A point $D$ is chosen inside the triangle. Show that the sum of distances $AD+BD+CD$ is less than the perimeter of the triangle. [b]p2.[/b] In a triangle $ABC$ the bisector of the angle $C$ intersects the side $AB$ at $M$, and the bisector of the angle $A$ intersects $CM$ at the point $T$. Suppose that the segments $CM$ and $AT$ divided the triangle $ABC$ into three isosceles triangles. Find the angles of the triangle $ABC$. [b]p3.[/b] You are given $100$ weights of masses $1, 2, 3,..., 99, 100$. Can one distribute them into $10$ piles having the following property: the heavier the pile, the fewer weights it contains? [b]p4.[/b] Each cell of a $10\times 10$ table contains a number. In each line the greatest number (or one of the largest, if more than one) is underscored, and in each column the smallest (or one of the smallest) is also underscored. It turned out that all of the underscored numbers are underscored exactly twice. Prove that all numbers stored in the table are equal to each other. [b]p5.[/b] Two stores have warehouses in which wheat is stored. There are $16$ more tons of wheat in the first warehouse than in the second. Every night exactly at midnight the owner of each store steals from his rival, taking a quarter of the wheat in his rival's warehouse and dragging it to his own. After $10$ days, the thieves are caught. Which warehouse has more wheat at this point and by how much? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2016 ITAMO, 4

Determine all pairs of positive integers $(a,n)$ with $a\ge n\ge 2$ for which $(a+1)^n+a-1$ is a power of $2$.

1993 Romania Team Selection Test, 4

Prove that the equation $ (x\plus{}y)^n\equal{}x^m\plus{}y^m$ has a unique solution in integers with $ x>y>0$ and $ m,n>1$.

The Golden Digits 2024, P3

Prove that there exist infinitely many positive integers $d$ such that we can find a polynomial $P\in\mathbb{Z}[x]$ of degree $d$ and $N\in\mathbb{N}$ such that for all integers $x>N$ and any prime $p$, we have $$\nu_p(P(x)^3+3P(x)^2-3)<\frac{d\cdot\log(x)}{2024^{2024}}.$$ [i]Proposed by Marius Cerlat[/i]

2021 Azerbaijan IMO TST, 3

Determine all functions $f$ defined on the set of all positive integers and taking non-negative integer values, satisfying the three conditions: [list] [*] $(i)$ $f(n) \neq 0$ for at least one $n$; [*] $(ii)$ $f(x y)=f(x)+f(y)$ for every positive integers $x$ and $y$; [*] $(iii)$ there are infinitely many positive integers $n$ such that $f(k)=f(n-k)$ for all $k<n$. [/list]