Found problems: 15460
MOAA Gunga Bowls, 2019
[u]Set 6[/u]
[b]p16.[/b] Let $n! = n \times (n - 1) \times ... \times 2 \times 1$. Find the maximum positive integer value of $x$ such that the quotient $\frac{160!}{160^x}$ is an integer.
[b]p17.[/b] Let $\vartriangle OAB$ be a triangle with $\angle OAB = 90^o$ . Draw points $C, D, E, F, G$ in its plane so that $$\vartriangle OAB \sim \vartriangle OBC \sim \vartriangle OCD \sim \vartriangle ODE \sim \vartriangle OEF \sim \vartriangle OFG,$$ and none of these triangles overlap. If points $O, A, G$ lie on the same line, then let $x$ be the sum of all possible values of $\frac{OG}{OA }$. Then, $x$ can be expressed in the form $m/n$ for relatively prime positive integers $m, n$. Compute $m + n$.
[b]p18.[/b] Let $f(x)$ denote the least integer greater than or equal to $x^{\sqrt{x}}$. Compute $f(1)+f(2)+f(3)+f(4)$.
[u]Set 7[/u]
The Fibonacci sequence $\{F_n\}$ is defined as $F_0 = 0$, $F_1 = 1$ and $F_{n+2} = F_{n+1} + F_n$ for all integers $n \ge 0$.
[b]p19.[/b] Find the least odd prime factor of $(F_3)^{20} + (F_4)^{20} + (F_5)^{20}$.
[b]p20.[/b] Let
$$S = \frac{1}{F_3F_5}+\frac{1}{F_4F_6}+\frac{1}{F_5F_7}+\frac{1}{F_6F_8}+...$$ Compute $420S$.
[b]p21.[/b] Consider the number $$Q = 0.000101020305080130210340550890144... ,$$ the decimal created by concatenating every Fibonacci number and placing a 0 right after the decimal point and between each Fibonacci number. Find the greatest integer less than or equal to $\frac{1}{Q}$.
[u]Set 8[/u]
[b]p22.[/b] In five dimensional hyperspace, consider a hypercube $C_0$ of side length $2$. Around it, circumscribe a hypersphere $S_0$, so all $32$ vertices of $C_0$ are on the surface of $S_0$. Around $S_0$, circumscribe a hypercube $C_1$, so that $S_0$ is tangent to all hyperfaces of $C_1$. Continue in this same fashion for $S_1$, $C_2$, $S_2$, and so on. Find the side length of $C_4$.
[b]p23.[/b] Suppose $\vartriangle ABC$ satisfies $AC = 10\sqrt2$, $BC = 15$, $\angle C = 45^o$. Let $D, E, F$ be the feet of the altitudes in $\vartriangle ABC$, and let $U, V , W$ be the points where the incircle of $\vartriangle DEF$ is tangent to the sides of $\vartriangle DEF$. Find the area of $\vartriangle UVW$.
[b]p24.[/b] A polynomial $P(x)$ is called spicy if all of its coefficients are nonnegative integers less than $9$. How many spicy polynomials satisfy $P(3) = 2019$?
[i]The next set will consist of three estimation problems.[/i]
[u]Set 9[/u]
Points will be awarded based on the formulae below. Answers are nonnegative integers that may exceed $1,000,000$.
[b]p25.[/b] Suppose a circle of radius $20192019$ has area $A$. Let s be the side length of a square with area $A$. Compute the greatest integer less than or equal to $s$.
If $n$ is the correct answer, an estimate of $e$ gives $\max \{ 0, \left\lfloor 1030 ( min \{ \frac{n}{e},\frac{e}{n}\}^{18}\right\rfloor -1000 \}$ points.
[b]p26.[/b] Given a $50 \times 50$ grid of squares, initially all white, define an operation as picking a square and coloring it and the four squares horizontally or vertically adjacent to it blue, if they exist. If a square is already colored blue, it will remain blue if colored again. What is the minimum number of operations necessary to color the entire grid blue?
If $n$ is the correct answer, an estimate of $e$ gives $\left\lfloor \frac{180}{5|n-e|+6}\right\rfloor$ points.
[b]p27.[/b] The sphere packing problem asks what percent of space can be filled with equally sized spheres without overlap. In three dimensions, the answer is $\frac{\pi}{3\sqrt2} \approx 74.05\%$ of space (confirmed as recently as $2017!$), so we say that the packing density of spheres in three dimensions is about $0.74$. In fact, mathematicians have found optimal packing densities for certain other dimensions as well, one being eight-dimensional space. Let d be the packing density of eight-dimensional hyperspheres in eightdimensional hyperspace. Compute the greatest integer less than $10^8 \times d$.
If $n$ is the correct answer, an estimate of e gives $\max \left\{ \lfloor 30-10^{-5}|n - e|\rfloor, 0 \right\}$ points.
PS. You had better use hide for answers. First sets have be posted [url=https://artofproblemsolving.com/community/c4h2777330p24370124]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2009 China Team Selection Test, 2
Find all the pairs of integers $ (a,b)$ satisfying $ ab(a \minus{} b)\not \equal{} 0$ such that there exists a subset $ Z_{0}$ of set of integers $ Z,$ for any integer $ n$, exactly one among three integers $ n,n \plus{} a,n \plus{} b$ belongs to $ Z_{0}$.
Kvant 2024, M2807
For positive integer numbers $a$, $b$ and $c$ it is known that $a^2+b^2+c^2$ and $a^3+b^3+c^3$ are both divisible by $a+b+c$. In addition, $gcd(a+b+c, 6) = 1$. Prove that $a^5+b^5+c^5$ is divisible by $(a+b+c)^2$.
[i] A. Antropov [/i]
2008 Dutch IMO TST, 4
Let $n$ be positive integer such that $\sqrt{1 + 12n^2}$ is an integer.
Prove that $2 + 2\sqrt{1 + 12n^2}$ is the square of an integer.
1997 Swedish Mathematical Competition, 3
Let $A$ and $B$ be integers with an odd sum. Show that every integer can be written in the form $x^2 -y^2 +Ax+By$, where $x,y$ are integers.
2011 Princeton University Math Competition, B2
Two robots are programmed to communicate numbers using different bases. The first robot states: "I communicate in base 10, which interestingly is a perfect square. You communicate in base 16, which is not a perfect square." The second robot states: "I find it more interesting that the sum of our bases is the factorial of an integer." The second robot is referring to the factorial of which integer?
2021 Science ON Juniors, 1
Let $a,p,q\in \mathbb{Z}_{\ge 1}$ be such that $a$ is a perfect square, $a=pq$ and
$$2021~|~p^3+q^3+p^2q+pq^2.$$
Prove that $2021$ divides $\sqrt a$.\\ \\
[i](Cosmin Gavrilă)[/i]
2014 Saudi Arabia Pre-TST, 3.4
Prove that there exists a positive integer $n$ such that the last digits of $n^3$ are $...201320132013$.
2017 Turkey MO (2nd round), 4
Let $d(n)$ be number of prime divisors of $n$. Prove that one can find $k,m$ positive integers for any positive integer $n$ such that $k-m=n$ and $d(k)-d(m)=1$
OMMC POTM, 2023 7
Let $N$ be a positive integer. Prove that at least one of the numbers $N$ of $3N$ contains at least one of the digits $1,2,9$.
[i]Proposed by Evan Chang (squareman), USA[/i]
2022 VJIMC, 4
Let $g$ be the multiplicative function given by $$g(p^{\alpha}) = \alpha p^{\alpha-1},$$ for all $\alpha\in\mathbb Z^+$ and primes $p$. Prove that there exist infinitely many integers $n$ such that $$g(n+1) = g(n) + g(1).$$
2023 IMAR Test, P3
Let $p{}$ be an odd prime number. Determine whether there exists a permutation $a_1,\ldots,a_p$ of $1,\ldots,p$ satisfying \[(i-j)a_k+(j-k)a_i+(k-i)a_j\neq 0,\] for all pairwise distinct $i,j,k.$
2024 SG Originals, Q4
Consider the function $f_k:\mathbb{Z}^{+}\rightarrow\mathbb{Z}^{+}$ satisfying
\[f_k(x)=x+k\varphi(x)\]
where $\varphi(x)$ is Euler's totient function, that is, the number of positive integers up to $x$ coprime to $x$. We define a sequence $a_1,a_2,...,a_{10}$ with
[list]
[*] $a_1=c$, and
[*] $a_n=f_k(a_{n-1}) \text{ }\forall \text{ } 2\le n\le 10$
[/list]
Is it possible to choose the initial value $c\ne 1$ such that each term is a multiple of the previous, if
(a) $k=2025$ ?
(b) $k=2065$ ?
[i]Proposed by chorn[/i]
2009 Olympic Revenge, 4
Let $d_i(k)$ the number of divisors of $k$ greater than $i$.
Let $f(n)=\sum_{i=1}^{\lfloor \frac{n^2}{2} \rfloor}d_i(n^2-i)-2\sum_{i=1}^{\lfloor \frac{n}{2} \rfloor}d_i(n-i)$.
Find all $n \in N$ such that $f(n)$ is a perfect square.
2003 All-Russian Olympiad Regional Round, 8.8
A set of $2003$ positive numbers is such that for any two numbers $a$ and $b$ included in it ($a > b$) at least one of the numbers $a + b$ or $a - b$ also included in the set. Prove that if these numbers are ordered by increasing, then the differences between adjacent numbers will be the same.
2005 Singapore MO Open, 1
An integer is square-free if it is not divisible by $a^2$ for any integer $a>1$. Let $S$ be the set of positive square-free integers. Determine, with justification, the value of\[\sum_{k\epsilon S}\left[\sqrt{\frac{10^{10}}{k}}\right]\]where $[x]$ denote the greatest integer less than or equal to $x$
1996 VJIMC, Problem 2
Let $\{x_n\}^\infty_{n=0}$ be the sequence such that $x_0=2$, $x_1=1$ and $x_{n+2}$ is the remainder of the number $x_{n+1}+x_n$ divided by $7$. Prove that $x_n$ is the remainder of the number
$$4^n\sum_{k=0}^{\left\lfloor\frac n2\right\rfloor}2\binom n{2k}5^k$$
ABMC Team Rounds, 2023
[u]Round 1[/u]
[b]1.1.[/b] A classroom has $29$ students. A teacher needs to split up the students into groups of at most $4$. What is the minimum number of groups needed?
[b]1.2.[/b] On his history map quiz, Eric recalls that Sweden, Norway and Finland are adjacent countries, but he has
forgotten which is which, so he labels them in random order. The probability that he labels all three countries
correctly can be written as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
[b]1.3.[/b] In a class of $40$ sixth graders, the class average for their final test comes out to be $90$ (out of a $100$). However, a student brings up an issue with problem $5$, and $10$ students receive credit for this question, bringing the class average to a $90.75$. How many points was problem $5$ worth?
[u]Round 2[/u]
[b]2.1.[/b] Compute $1 - 2 + 3 - 4 + ... - 2022 + 2023$.
[b]2.2.[/b] In triangle $ABC$, $\angle ABC = 75^o$. Point $D$ lies on side $AC$ such that $BD = CD$ and $\angle BDC$ is a right angle. Compute the measure of $\angle A$.
[b]2.3.[/b] Joe is rolling three four-sided dice each labeled with positive integers from $1$ to $4$. The probability the sum of the numbers on the top faces of the dice is $6$ can be written as $\frac{p}{q}$ where $p$ and $q$ are relatively prime integers. Find $p + q$.
[u]Round 3[/u]
[b]3.1.[/b] For positive integers $a, b, c, d$ that satisfy $a + b + c + d = 23$, what is the maximum value of $abcd$?
[b]3.2.[/b] A buckball league has twenty teams. Each of the twenty teams plays exactly five games with each of the other teams. If each game takes 1 hour and thirty minutes, then how many total hours are spent playing games?
[b]3.3.[/b] For a triangle $\vartriangle ABC$, let $M, N, O$ be the midpoints of $AB$, $BC$, $AC$, respectively. Let $P, Q, R$ be points on $AB$, $BC$, $AC$ such that $AP =\frac13 AB$, $BQ =\frac13 BC$, and $CR =\frac13 AC$. The ratio of the areas of $\vartriangle MNO$ and $\vartriangle P QR$ can be expressed as $\frac{m}{n}$ , where $ m$ and $n$ are relatively prime positive integers. Find $m + n$.
[u]Round 4[/u]
[b]4.1.[/b] $2023$ has the special property that leaves a remainder of $1$ when divided by $2$, $21$ when divided by $22$, and $22$ when divided by $23$. Let $n$ equal the lowest integer greater than $2023$ with the above properties. What is $n$?
[b]4.2.[/b] Ants $A, B$ are on points $(0, 0)$ and $(3, 3)$ respectively, and ant A is trying to get to $(3, 3)$ while ant $B$ is trying to get to $(0, 0)$. Every second, ant $A$ will either move up or right one with equal probability, and ant $B$ will move down or left one with equal probability. The probability that the ants will meet each other be $\frac{a}{b}$, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.
[b]4.3.[/b] Find the number of trailing zeros of $100!$ in base $ 49$.
PS. You should use hide for answers. Rounds 5-9 have been posted [url=https://artofproblemsolving.com/community/c3h3129723p28347714]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2000 Tournament Of Towns, 1
Positive integers $m$ and $n$ have no common divisor greater than one. What is the largest possible value of the greatest common divisor of $m + 2000n$ and $n + 2000m$ ?
(S Zlobin)
2002 Romania National Olympiad, 2
Prove that any real number $0<x<1$ can be written as a difference of two positive and less than $1$ irrational numbers.
2008 Tournament Of Towns, 1
An integer $N$ is the product of two consecutive integers.
(a) Prove that we can add two digits to the right of this number and obtain a perfect square.
(b) Prove that this can be done in only one way if $N > 12$
2011 Danube Mathematical Competition, 2
Let S be a set of positive integers such that: min { lcm (x, y) : x, y ∈ S, $x \neq y$ } $\ge$ 2 + max S.
Prove that $\displaystyle\sum\limits_{x \in S} \frac{1}{x} \le \frac{3}{2} $.
2000 Flanders Math Olympiad, 1
An integer consists of 7 different digits, and is a multiple of each of its digits.
What digits are in this nubmer?
2017 All-Russian Olympiad, 3
There are $100$ dwarfes with weight $1,2,...,100$. They sit on the left riverside. They can not swim, but they have one boat with capacity 100. River has strong river flow, so every dwarf has power only for one passage from right side to left as oarsman. On every passage can be only one oarsman. Can all dwarfes get to right riverside?
2009 Iran Team Selection Test, 4
Find all polynomials $f$ with integer coefficient such that, for every prime $p$ and natural numbers $u$ and $v$ with the condition:
\[ p \mid uv - 1 \]
we always have $p \mid f(u)f(v) - 1$.