This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 95

III Soros Olympiad 1996 - 97 (Russia), 9.1

Tags: radical , algebra
Without using a calculator, find out which number is greater: $$|\sqrt[3]{5}-\sqrt3|-\sqrt3| \,\,\,\, \text{or} \,\,\,\, 0.01$$

1998 Chile National Olympiad, 3

Evaluate $\sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{1+...}}}}$.

1988 All Soviet Union Mathematical Olympiad, 486

Prove that for any tetrahedron the radius of the inscribed sphere $r <\frac{ ab}{ 2(a + b)}$, where $a$ and $b$ are the lengths of any pair of opposite edges.

2019 Saudi Arabia JBMO TST, 1

Let $a, b$ and $c$ be positive real numbers such that $a + b + c = 1$. Prove that $$\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}+\frac{c}{a}+\frac{a}{c} \ge 2\sqrt2 \left( \sqrt{\frac{1-a}{a}}+\sqrt{\frac{1-b}{b}}+\sqrt{\frac{1-c}{c}}\right)$$

1996 Tuymaada Olympiad, 5

Solve the equation $\sqrt{1981-\sqrt{1996+x}}=x+15$

1994 All-Russian Olympiad, 1

Prove that if $(x+\sqrt{x^2 +1}) (y+\sqrt{y^2 +1}) = 1$, then $x+y = 0$.

2008 Dutch IMO TST, 4

Let $n$ be positive integer such that $\sqrt{1 + 12n^2}$ is an integer. Prove that $2 + 2\sqrt{1 + 12n^2}$ is the square of an integer.

2009 Grand Duchy of Lithuania, 3

Tags: algebra , radical
Solve the equation $x^2+ 2 = 4\sqrt{x^3+1}$

1998 Tuymaada Olympiad, 2

Solve the equation $(x^3-1000)^{1/2}=(x^2+100)^{1/3}$

2012 Hanoi Open Mathematics Competitions, 4

What is the largest integer less than or equal to $4x^3 - 3x$, where $x=\frac{\sqrt[3]{2+\sqrt3}+\sqrt[3]{2-\sqrt3}}{2}$ ? (A) $1$, (B) $2$, (C) $3$, (D) $4$, (E) None of the above.

1985 Swedish Mathematical Competition, 1

If $a > b > 0$, prove the inequality $$\frac{(a-b)^2}{8a}< \frac{a+b}{2}- \sqrt{ab} < \frac{(a-b)^2}{8b}.$$

IV Soros Olympiad 1997 - 98 (Russia), 11.8

Tags: radical , algebra
Calculate $\sqrt{5,44...4}$ (the decimal point is followed by $100$ fours) with approximation to: a) $10^{-100}$, b) $10^{-200}$

IV Soros Olympiad 1997 - 98 (Russia), 10.7

Tags: algebra , radical
Prove that the number $\left(\sqrt2+\sqrt3+\sqrt5\right)^{1997}$ can be represented as $$A\sqrt2+B\sqrt3+C\sqrt5+D\sqrt{30}$$ where $A$, $B$, $C$, $D$ are integers. Find with approximation to $10^{-10}$ the ratio $\frac{D}{A}$

1988 Swedish Mathematical Competition, 6

The sequence $(a_n)$ is defined by $a_1 = 1$ and $a_{n+1} = \sqrt{a_n^2 +\frac{1}{a_n}}$ for $n \ge 1$. Prove that there exists $a$ such that $\frac{1}{2} \le \frac{a_n}{n^a} \le 2$ for $n \ge 1$.

1984 All Soviet Union Mathematical Olympiad, 372

Prove that every positive $a$ and $b$ satisfy inequality $$\frac{(a+b)^2}{2} + \frac{a+b}{4} \ge a\sqrt b + b\sqrt a$$

1977 Vietnam National Olympiad, 1

Find all real $x$ such that $ \sqrt{x - \frac{1}{x}} + \sqrt{1 - \frac{1}{x}}> \frac{x - 1}{x}$

2021 Auckland Mathematical Olympiad, 3

For how many integers $n$ between $ 1$ and $2021$ does the infinite nested expression $$\sqrt{n + \sqrt{n +\sqrt{n + \sqrt{...}}}}$$ give a rational number?

1945 Moscow Mathematical Olympiad, 104

The numbers $a_1, a_2, ..., a_n$ are equal to $1$ or $-1$. Prove that $$2 \sin \left(a_1+\frac{a_1a_2}{2}+\frac{a_1a_2a_3}{4}+...+\frac{a_1a_2...a_n}{2^{n-1}}\right)\frac{\pi}{4}=a_1\sqrt{2+a_2\sqrt{2+a_3\sqrt{2+...+a_n\sqrt2}}}$$ In particular, for $a_1 = a_2 = ... = a_n = 1$ we have $$2 \sin \left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2^{n-1}}\right)\frac{\pi}{4}=2\cos \frac{\pi}{2^{n+1}}= \sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt2}}}$$

II Soros Olympiad 1995 - 96 (Russia), 9.6

Tags: radical , algebra
Without using a calculator (especially a computer), find out what is more: $$\sqrt[3]{5\sqrt{13}+18}- \sqrt[3]{2\sqrt{13}+5} \,\,\, or \,\,\, 1 $$

III Soros Olympiad 1996 - 97 (Russia), 10.3

Tags: radical , algebra
Solve the equation $$\sqrt{x(x+7)}+\sqrt{(x+7)(x+17)}+\sqrt{(x+17)(x+24)}=12+17\sqrt2$$

1964 All Russian Mathematical Olympiad, 046

Find integer solutions $(x,y)$ of the equation ($1964$ times "$\sqrt{}$"): $$\sqrt{x+\sqrt{x+\sqrt{....\sqrt{x+\sqrt{x}}}}}=y$$

1975 Chisinau City MO, 116

The sides of a triangle are equal to $\sqrt2, \sqrt3, \sqrt4$ and its angles are $\alpha, \beta, \gamma$, respectively. Prove that the equation $x\sin \alpha + y\sin \beta + z\sin \gamma = 0$ has exactly one solution in integers $x, y, z$.

1975 Chisinau City MO, 86

Tags: radical , algebra
What is the number $x =\sqrt{4+\sqrt7}-\sqrt{4-\sqrt7}-\sqrt2$, positive, negative or zero?

2003 Junior Balkan Team Selection Tests - Romania, 3

Let $n$ be a positive integer. Prove that there are no positive integers $x$ and $y$ such as $\sqrt{n}+\sqrt{n+1} < \sqrt{x}+\sqrt{y} <\sqrt{4n+2} $

IV Soros Olympiad 1997 - 98 (Russia), 9.2

Tags: radical , algebra
Solve the equation $$2\sqrt{1+x\sqrt{1+(x+1)\sqrt{1+(x+2)\sqrt{1+(x+3)(x+5)}}}}=x$$