This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2024 Romanian Master of Mathematics, 6

A polynomial $P$ with integer coefficients is [i]square-free[/i] if it is not expressible in the form $P = Q^2R$, where $Q$ and $R$ are polynomials with integer coefficients and $Q$ is not constant. For a positive integer $n$, let $P_n$ be the set of polynomials of the form $$1 + a_1x + a_2x^2 + \cdots + a_nx^n$$ with $a_1,a_2,\ldots, a_n \in \{0,1\}$. Prove that there exists an integer $N$ such that for all integers $n \geq N$, more than $99\%$ of the polynomials in $P_n$ are square-free. [i]Navid Safaei, Iran[/i]

2023 239 Open Mathematical Olympiad, 4

We call a natural number [i]almost a square[/i] if it can be represented as a product of two numbers that differ by no more than one percent of the larger of them. Prove that there are infinitely many consecutive quadruples of almost squares.

1989 Tournament Of Towns, (210) 4

Prove that if $k$ is an even positive integer then it is possible to write the integers from $1$ to $k-1$ in such an order that the sum of no set of successive numbers is divisible by $k$ .

2005 Korea Junior Math Olympiad, 6

For two different prime numbers $p, q$, defi ne $S_{p,q} = \{p,q,pq\}$. If two elements in $S_{p,q}$ are numbers in the form of $x^2 + 2005y^2, (x, y \in Z)$, prove that all three elements in $S_{p,q}$ are in such form.

2001 Brazil Team Selection Test, Problem 2

Let $f(n)$ denote the least positive integer $k$ such that $1+2+\cdots+k$ is divisible by $n$. Show that $f(n)=2n-1$ if and only if $n$ is a power of $2$.

2012 Spain Mathematical Olympiad, 1

Find all positive integers $n$ and $k$ such that $(n+1)^n=2n^k+3n+1$.

2017 Iran MO (3rd round), 2

For prime number $q$ the polynomial $P(x)$ with integer coefficients is said to be factorable if there exist non-constant polynomials $f_q,g_q$ with integer coefficients such that all of the coefficients of the polynomial $Q(x)=P(x)-f_q(x)g_q(x)$ are dividable by $q$ ; and we write: $$P(x)\equiv f_q(x)g_q(x)\pmod{q}$$ For example the polynomials $2x^3+2,x^2+1,x^3+1$ can be factored modulo $2,3,p$ in the following way: $$\left\{\begin{array}{lll} X^2+1\equiv (x+1)(-x+1)\pmod{2}\\ 2x^3+2\equiv (2x-1)^3\pmod{3}\\ X^3+1\equiv (x+1)(x^2-x+1) \end{array}\right.$$ Also the polynomial $x^2-2$ is not factorable modulo $p=8k\pm 3$. a) Find all prime numbers $p$ such that the polynomial $P(x)$ is factorable modulo $p$: $$P(x)=x^4-2x^3+3x^2-2x-5$$ b) Does there exist irreducible polynomial $P(x)$ in $\mathbb{Z}[x]$ with integer coefficients such that for each prime number $p$ , it is factorable modulo $p$?

Russian TST 2018, P4

Let $k$ be a given even positive integer. Sarah first picks a positive integer $N$ greater than $1$ and proceeds to alter it as follows: every minute, she chooses a prime divisor $p$ of the current value of $N$, and multiplies the current $N$ by $p^k -p^{-1}$ to produce the next value of $N$. Prove that there are infinitely many even positive integers $k$ such that, no matter what choices Sarah makes, her number $N$ will at some point be divisible by $2018$.

2021 Indonesia TST, N

Bamicin is initially at $(20, 20)$ in a cartesian plane. Every minute, if Bamicin is at point $P$, Bamicin can move to a lattice point exactly $37$ units from $P$. Determine all lattice points Bamicin can visit.

2009 Junior Balkan Team Selection Tests - Romania, 2

Let $a$ and $b$ be positive integers. Consider the set of all non-negative integers $n$ for which the number $\left(a+\frac12\right)^n +\left(b+\frac12\right)^n$ is an integer. Show that the set is finite.

2021 Abels Math Contest (Norwegian MO) Final, 3a

For which integers $0 \le k \le 9$ do there exist positive integers $m$ and $n$ so that the number $3^m + 3^n + k$ is a perfect square?

1963 Swedish Mathematical Competition., 1

How many positive integers have square less than $10^7$?

2023 Kyiv City MO Round 1, Problem 3

Prove that there don't exist positive integer numbers $k$ and $n$ which satisfy equation $n^n+(n+1)^{n+1}+(n+2)^{n+2} = 2023^k$. [i]Proposed by Mykhailo Shtandenko[/i]

2007 Olympic Revenge, 1

Let $a$, $b$, $n$ be positive integers with $a,b > 1$ and $\gcd(a,b) = 1$. Prove that $n$ divides $\phi\left(a^{n}+b^{n}\right)$.

2012 Tournament of Towns, 4

Brackets are to be inserted into the expression $10 \div 9 \div 8 \div 7 \div 6 \div 5 \div 4 \div 3 \div 2$ so that the resulting number is an integer. (a) Determine the maximum value of this integer. (b) Determine the minimum value of this integer.

2000 Argentina National Olympiad, 1

The natural numbers are written in succession, forming a sequence of digits$$12345678910111213141516171819202122232425262728293031\ldots$$Determine how many digits the natural number has that contributes to this sequence with the digit in position $10^{2000}$. Clarification: The natural number that contributes to the sequence with the digit in position $10$ has $2$ digits, because it is $10$; The natural number that contributes to the sequence with the digit at position $10^2$ has $2$ digits, because it is $55$.

Oliforum Contest V 2017, 1

We know that there exists a positive integer with $7$ distinct digits which is multiple of each of them. What are its digits? (Paolo Leonetti)

2024 Junior Balkan Team Selection Tests - Romania, P3

[b]Version 1.[/b] Find all primes $p$ satisfying the following conditions: (i) $\frac{p+1}{2}$ is a prime number. (ii) There are at least three distinct positive integers $n$ for which $\frac{p^2+n}{p+n^2}$ is an integer. [b]Version 2.[/b] Let $p \neq 5$ be a prime number such that $\frac{p+1}{2}$ is also a prime. Suppose there exist positive integers $a <b$ such that $\frac{p^2+a}{p+a^2}$ and $\frac{p^2+b}{p+b^2}$ are integers. Show that $b=(a-1)^2+1$.

2018 Iran Team Selection Test, 3

$n>1$ and distinct positive integers $a_1,a_2,\ldots,a_{n+1}$ are  given. Does there exist a polynomial $p(x)\in\Bbb{Z}[x]$ of degree  $\le n$ that satisfies the following conditions? a. $\forall_{1\le i < j\le n+1}: \gcd(p(a_i),p(a_j))>1 $ b. $\forall_{1\le i < j < k\le n+1}: \gcd(p(a_i),p(a_j),p(a_k))=1 $ [i]Proposed by Mojtaba Zare[/i]

2007 Purple Comet Problems, 8

You know that the Jones family has five children, and the Smith family has three children. Of the eight children you know that there are five girls and three boys. Let $\dfrac{m}{n}$ be the probability that at least one of the families has only girls for children. Given that $m$ and $n$ are relatively prime positive integers, find $m+ n$.

1995 AIME Problems, 1

Square $S_{1}$ is $1\times 1.$ For $i\ge 1,$ the lengths of the sides of square $S_{i+1}$ are half the lengths of the sides of square $S_{i},$ two adjacent sides of square $S_{i}$ are perpendicular bisectors of two adjacent sides of square $S_{i+1},$ and the other two sides of square $S_{i+1},$ are the perpendicular bisectors of two adjacent sides of square $S_{i+2}.$ The total area enclosed by at least one of $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}$ can be written in the form $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m-n.$ [asy] size(250); path p=rotate(45)*polygon(4); int i; for(i=0; i<5; i=i+1) { draw(shift(2-(1/2)^(i-1),0)*scale((1/2)^i)*p); } label("$S_1$", (0,-0.75)); label("$S_2$", (1,-0.75)); label("$S_3$", (3/2,-0.75)); label("$\cdots$", (7/4, -3/4)); label("$\cdots$", (2.25, 0));[/asy]

2008 Grigore Moisil Intercounty, 4

Let $ n$ be a positive integer, and $ k\leq n\minus{}1$, $ k\in \mathbb{N}$. Denote $ a_k\equal{}k!(1\plus{}\frac12\plus{}\frac13\plus{}\cdots\plus{}\frac1k)$. Prove that the number $ k! \cdot\left[\binom{n\minus{}1}{k}\minus{}(\minus{}1)^k\right]\plus{}(\minus{}1)^k\cdot a_k \cdot n$ is divisible by $ n^2$.

2014 Bundeswettbewerb Mathematik, 4

Find all postive integers $n$ for which the number $\frac{4n+1}{n(2n-1)}$ has a terminating decimal expansion.

2015 Postal Coaching, Problem 3

Let $a$ and $n$ denote positive integers such that $n|a^n-1$. Prove that the numbers $a+1,a^2+2, \cdots a^n+n$ all leave different remainders when divided by $n$.

1983 Poland - Second Round, 6

For a given number $ n $, let us denote by $ p_n $ the probability that when randomly selecting a pair of integers $ k, m $ satisfying the conditions $ 0 \leq k \leq m \leq 2^n $ (the selection of each pair is equally probable) the number $\binom{m}{k}$ will be even. Calculate $ \lim_{n\to \infty} p_n $.