Found problems: 15460
2006 Estonia National Olympiad, 1
Find all pairs of positive integers $ (a, b)$ such that
\[ ab \equal{} gcd(a, b) \plus{} lcm(a, b).
\]
1992 Putnam, A3
Let $m,n$ are natural numbers such that $GCD(m,n)=1$.Find all triplets $(x,y,n)$ which sastify $(x^2+y^2)^m=(xy)^n$
2016 Junior Regional Olympiad - FBH, 2
Which fraction is bigger: $\frac{5553}{5557}$ or $\frac{6664}{6669}$ ?
2021-IMOC, N7
Let $p$ be a given odd prime. Find the largest integer $k'$ such that it is possible to partition $\{1,2,\cdots,p-1\}$ into two sets $X,Y$ such that for any $k$ with $0 \le k \le k'$,
$$\sum_{a \in X}a^k \equiv \sum_{b \in Y}b^k \pmod p$$
[i]houkai[/i]
MBMT Team Rounds, 2019
[hide=D stands for Descartes, L stands for Leibniz]they had two problem sets under those two names[/hide]
[b]D1.[/b] What is the solution to the equation $3 \cdot x \cdot 5 = 4 \cdot 5 \cdot 6$?
[b]D2.[/b] Mr. Rose is making Platonic solids! If there are five different types of Platonic solids, and each Platonic solid can be one of three colors, how many different colored Platonic solids can Mr. Rose make?
[b]D3.[/b] What fraction of the multiples of $5$ between $1$ and $100$ inclusive are also multiples of $20$?
[b]D4.[/b] What is the maximum number of times a circle can intersect a triangle?
[b]D5 / L1.[/b] At an interesting supermarket, the nth apple you purchase costs $n$ dollars, while pears are $3$ dollars each. Given that Layla has exactly enough money to purchase either $k$ apples or $2k$ pears for $k > 0$, how much money does Layla have?
[b]D6 / L3.[/b] For how many positive integers $1 \le n \le 10$ does there exist a prime $p$ such that the sum of the digits of $p$ is $n$?
[b]D7 / L2.[/b] Real numbers $a, b, c$ are selected uniformly and independently at random between $0$ and $1$. What is the probability that $a \ge b \le c$?
[b]D8.[/b] How many ordered pairs of positive integers $(x, y)$ satisfy $lcm(x, y) = 500$?
[b]D9 / L4.[/b] There are $50$ dogs in the local animal shelter. Each dog is enemies with at least $2$ other dogs. Steven wants to adopt as many dogs as possible, but he doesn’t want to adopt any pair of enemies, since they will cause a ruckus. Considering all possible enemy networks among the dogs, find the maximum number of dogs that Steven can possibly adopt.
[b]D10 / L7.[/b] Unit circles $a, b, c$ satisfy $d(a, b) = 1$, $d(b, c) = 2$, and $d(c, a) = 3,$ where $d(x, y)$ is defined to be the minimum distance between any two points on circles $x$ and $y$. Find the radius of the smallest circle entirely containing $a$, $b$, and $c$.
[b]D11 / L8.[/b] The numbers $1$ through $5$ are written on a chalkboard. Every second, Sara erases two numbers $a$ and $b$ such that $a \ge b$ and writes $\sqrt{a^2 - b^2}$ on the board. Let M and m be the maximum and minimum possible values on the board when there is only one number left, respectively. Find the ordered pair $(M, m)$.
[b]D12 / L9.[/b] $N$ people stand in a line. Bella says, “There exists an assignment of nonnegative numbers to the $N$ people so that the sum of all the numbers is $1$ and the sum of any three consecutive people’s numbers does not exceed $1/2019$.” If Bella is right, find the minimum value of $N$ possible.
[b]D13 / L10.[/b] In triangle $\vartriangle ABC$, $D$ is on $AC$ such that $BD$ is an altitude, and $E$ is on $AB$ such that $CE$ is an altitude. Let F be the intersection of $BD$ and $CE$. If $EF = 2FC$, $BF = 8DF$, and $DC = 3$, then find the area of $\vartriangle CDF$.
[b]D14 / L11.[/b] Consider nonnegative real numbers $a_1, ..., a_6$ such that $a_1 +... + a_6 = 20$. Find the minimum possible value of $$\sqrt{a^2_1 + 1^2} +\sqrt{a^2_2 + 2^2} +\sqrt{a^2_3 + 3^2} +\sqrt{a^2_4 + 4^2} +\sqrt{a^2_5 + 5^2} +\sqrt{a^2_6 + 6^2}.$$
[b]D15 / L13.[/b] Find an $a < 1000000$ so that both $a$ and $101a$ are triangular numbers. (A triangular number is a number that can be written as $1 + 2 +... + n$ for some $n \ge 1$.)
Note: There are multiple possible answers to this problem. You only need to find one.
[b]L6.[/b] How many ordered pairs of positive integers $(x, y)$, where $x$ is a perfect square and $y$ is a perfect cube, satisfy $lcm(x, y) = 81000000$?
[b]L12.[/b] Given two points $A$ and $B$ in the plane with $AB = 1$, define $f(C)$ to be the incenter of triangle $ABC$, if it exists. Find the area of the region of points $f(f(X))$ where $X$ is arbitrary.
[b]L14.[/b] Leptina and Zandar play a game. At the four corners of a square, the numbers $1, 2, 3$, and $4$ are written in clockwise order. On Leptina’s turn, she must swap a pair of adjacent numbers. On Zandar’s turn, he must choose two adjacent numbers $a$ and $b$ with $a \ge b$ and replace $a$ with $ a - b$. Zandar wants to reduce the sum of the numbers at the four corners of the square to $2$ in as few turns as possible, and Leptina wants to delay this as long as possible. If Leptina goes first and both players play optimally, find the minimum number of turns Zandar can take after which Zandar is guaranteed to have reduced the sum of the numbers to $2$.
[b]L15.[/b] There exist polynomials $P, Q$ and real numbers $c_0, c_1, c_2, ... , c_{10}$ so that the three polynomials $P, Q$, and $$c_0P^{10} + c_1P^9Q + c_2P^8Q^2 + ... + c_{10}Q^{10}$$ are all polynomials of degree 2019. Suppose that $c_0 = 1$, $c_1 = -7$, $c_2 = 22$. Find all possible values of $c_{10}$.
Note: The answer(s) are rational numbers. It suffices to give the prime factorization(s) of the numerator(s) and denominator(s).
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1991 IberoAmerican, 4
Find a positive integer $n$ with five non-zero different digits, which satisfies to be equal to the sum of all the three-digit numbers that can be formed using the digits of $n$.
2019 Girls in Mathematics Tournament, 3
We say that a positive integer N is [i]nice[/i] if it satisfies the following conditions:
$\bullet$ All of its digits are $1$ or $2$
$\bullet$ All numbers formed by $3$ consecutive digits of $N$ are distinct.
For example, $121222$ is nice, because the $4$ numbers formed by $3$ consecutive digits of $121222$, which are $121,212,122$ and $222$, are distinct. However, $12121$ is not nice. What is the largest quantity possible number of numbers that a nice number can have? What is the greatest nice number there is?
2010 Contests, 3
Prove that for every given positive integer $n$, there exists a prime $p$ and an integer $m$ such that
$(a)$ $p \equiv 5 \pmod 6$
$(b)$ $p \nmid n$
$(c)$ $n \equiv m^3 \pmod p$
2018 Iran MO (2nd Round), 3
Let $a>k$ be natural numbers and $r_1<r_2<\dots r_n,s_1<s_2<\dots <s_n$ be sequences of natural numbers such that:
$(a^{r_1}+k)(a^{r_2}+k)\dots (a^{r_n}+k)=(a^{s_1}+k)(a^{s_2}+k)\dots (a^{s_n}+k)$
Prove that these sequences are equal.
2024 China Team Selection Test, 16
$m>1$ is an integer such that $[2m-\sqrt{m}+1, 2m]$ contains a prime. Prove that for any pairwise distinct positive integers $a_1$, $a_2$, $\dots$, $a_m$, there is always $1\leq i,j\leq m$ such that $\frac{a_i}{(a_i, a_j)}\geq m$.
2006 Italy TST, 2
Let $n$ be a positive integer, and let $A_{n}$ be the the set of all positive integers $a\le n$ such that $n|a^{n}+1$.
a) Find all $n$ such that $A_{n}\neq \emptyset$
b) Find all $n$ such that $|{A_{n}}|$ is even and non-zero.
c) Is there $n$ such that $|{A_{n}}| = 130$?
2023 Turkey Junior National Olympiad, 3
Let $m,n$ be relatively prime positive integers. Prove that the numbers
$$\frac{n^4+m}{m^2+n^2} \qquad \frac{n^4-m}{m^2-n^2}$$
cannot be integer at the same time.
2013 India PRMO, 13
To each element of the set $S = \{1,2,... ,1000\}$ a colour is assigned. Suppose that for any two elements $a, b$ of $S$, if $15$ divides $a + b$ then they are both assigned the same colour. What is the maximum possible number of distinct colours used?
2004 Polish MO Finals, 6
An integer $ m > 1$ is given. The infinite sequence $ (x_n)_{n\ge 0}$ is defined by $ x_i\equal{}2^i$ for $ i<m$ and $ x_i\equal{}x_{i\minus{}1}\plus{}x_{i\minus{}2}\plus{}\cdots \plus{}x_{i\minus{}m}$ for $ i\ge m$.
Find the greatest natural number $ k$ such that there exist $ k$ successive terms of this sequence which are divisible by $ m$.
2017 IMO Shortlist, N4
Call a rational number [i]short[/i] if it has finitely many digits in its decimal expansion. For a positive integer $m$, we say that a positive integer $t$ is $m-$[i]tastic[/i] if there exists a number $c\in \{1,2,3,\ldots ,2017\}$ such that $\dfrac{10^t-1}{c\cdot m}$ is short, and such that $\dfrac{10^k-1}{c\cdot m}$ is not short for any $1\le k<t$. Let $S(m)$ be the set of $m-$tastic numbers. Consider $S(m)$ for $m=1,2,\ldots{}.$ What is the maximum number of elements in $S(m)$?
2017 Argentina National Math Olympiad Level 2, 4
Find all positive integers $a$ such that $4x^2 + a$ is prime for all $x = 0, 1, \dots, a - 1$.
2023 Middle European Mathematical Olympiad, 8
Let $A, B \in \mathbb{N}$. Consider a sequence $x_1, x_2, \ldots$ such that for all $n\geq 2$, $$x_{n+1}=A \cdot \gcd(x_n, x_{n-1})+B. $$ Show that the sequence attains only finitely many distinct values.
2025 Kyiv City MO Round 2, Problem 3
A positive integer \( n \), which has at least one proper divisor, is divisible by the arithmetic mean of the smallest and largest of its proper divisors (which may coincide). What can be the number of divisors of \( n \)?
[i]A proper divisor of a positive integer \( n \) is any of its divisors other than \( 1 \) and \( n \).[/i]
[i]Proposed by Mykhailo Shtandenko[/i]
PEN D Problems, 3
Show that \[(-1)^{\frac{p-1}{2}}{p-1 \choose{\frac{p-1}{2}}}\equiv 4^{p-1}\pmod{p^{3}}\] for all prime numbers $p$ with $p \ge 5$.
2023 Durer Math Competition Finals, 15
What is the biggest positive integer which divides $p^4 - q^4$ for all primes $p$ and $q$ greater than $10$?
PEN A Problems, 28
Prove that the expression \[\frac{\gcd(m, n)}{n}{n \choose m}\] is an integer for all pairs of positive integers $(m, n)$ with $n \ge m \ge 1$.
MMATHS Mathathon Rounds, 2014
[u]Round 1[/u]
[b]p1.[/b] A circle is inscribed inside a square such that the cube of the radius of the circle is numerically equal to the perimeter of the square. What is the area of the circle?
[b]p2.[/b] If the coefficient of $z^ky^k$ is $252$ in the expression $(z + y)^{2k}$, find $k$.
[b]p3.[/b] Let $f(x) = \frac{4x^4-2x^3-x^2-3x-2}{x^4-x^3+x^2-x-1}$ be a function defined on the real numbers where the denominator is not zero. The graph of $f$ has a horizontal asymptote. Compute the sum of the x-coordinates of the points where the graph of $f$ intersects this horizontal asymptote. If the graph of f does not intersect the asymptote, write $0$.
[u]Round 2 [/u]
[b]p4.[/b] How many $5$-digit numbers have strictly increasing digits? For example, $23789$ has strictly increasing digits, but $23889$ and $23869$ do not.
[b]p5.[/b] Let
$$y =\frac{1}{1 +\frac{1}{9 +\frac{1}{5 +\frac{1}{9 +\frac{1}{5 +...}}}}}$$ If $y$ can be represented as $\frac{a\sqrt{b} + c}{d}$ , where $b$ is not divisible by any squares, and the greatest common divisor of $a$ and $d$ is $1$, find the sum $a + b + c + d$.
[b]p6.[/b] “Counting” is defined as listing positive integers, each one greater than the previous, up to (and including) an integer $n$. In terms of $n$, write the number of ways to count to $n$.
[u]Round 3 [/u]
[b]p7.[/b] Suppose $p$, $q$, $2p^2 + q^2$, and $p^2 + q^2$ are all prime numbers. Find the sum of all possible values of $p$.
[b]p8.[/b] Let $r(d)$ be a function that reverses the digits of the $2$-digit integer $d$. What is the smallest $2$-digit positive integer $N$ such that for some $2$-digit positive integer $n$ and $2$-digit positive integer $r(n)$, $N$ is divisible by $n$ and $r(n)$, but not by $11$?
[b]p9.[/b] What is the period of the function $y = (\sin(3\theta) + 6)^2 - 10(sin(3\theta) + 7) + 13$?
[u]Round 4 [/u]
[b]p10.[/b] Three numbers $a, b, c$ are given by $a = 2^2 (\sum_{i=0}^2 2^i)$, $b = 2^4(\sum_{i=0}^4 2^i)$, and $c = 2^6(\sum_{i=0}^6 2^i)$ . $u, v, w$ are the sum of the divisors of a, b, c respectively, yet excluding the original number itself. What is the value of $a + b + c -u - v - w$?
[b]p11.[/b] Compute $\sqrt{6- \sqrt{11}} - \sqrt{6+ \sqrt{11}}$.
[b]p12.[/b] Let $a_0, a_1,..., a_n$ be such that $a_n\ne 0$ and $$(1 + x + x^3)^{341}(1 + 2x + x^2 + 2x^3 + 2x^4 + x^6)^{342} =\sum_{i=0}^n a_ix^i.$$ Find the number of odd numbers in the sequence $a_0, a_1,..., a_n$.
PS. You should use hide for answers. Rounds 5-7 have been posted [url=https://artofproblemsolving.com/community/c4h2781343p24424617]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1997 Belarusian National Olympiad, 4
$$Problem 4:$$The sum of $5$ positive numbers equals $2$. Let $S_k$ be the sum of the $k-th$ powers of
these numbers. Determine which of the numbers $2,S_2,S_3,S_4$ can be the greatest among them.
1999 Argentina National Olympiad, 1
Three natural numbers greater than or equal to $2$ are written, not necessarily different, and from them a sequence is constructed using the following procedure: in each step, if the penultimate number written is $a$, the penultimate one is $b$ and the last one is $c$, it is written $x$ such that $$x\cdot c=a+b+186.$$Determine all the possible values of the three numbers initially written so that when the process continues indefinitely all the written numbers are natural numbers greater than or equal to $2$.
2014 Baltic Way, 17
Do there exist pairwise distinct rational numbers $x, y$ and $z$ such that \[\frac{1}{(x - y)^2}+\frac{1}{(y - z)^2}+\frac{1}{(z - x)^2}= 2014?\]