Found problems: 15460
2004 China Team Selection Test, 1
Let $ m_1$, $ m_2$, $ \cdots$, $ m_r$ (may not distinct) and $ n_1$, $ n_2$ $ \cdots$, $ n_s$ (may not distinct) be two groups of positive integers such that for any positive integer $ d$ larger than $ 1$, the numbers of which can be divided by $ d$ in group $ m_1$, $ m_2$, $ \cdots$, $ m_r$ (including repeated numbers) are no less than that in group $ n_1$, $ n_2$ $ \cdots$, $ n_s$ (including repeated numbers).
Prove that $ \displaystyle \frac{m_1 \cdot m_2 \cdots m_r}{n_1 \cdot n_2 \cdots n_s}$ is integer.
2008 Kurschak Competition, 1
Denote by $d(n)$ the number of positive divisors of a positive integer $n$. Find the smallest constant $c$ for which $d(n)\le c\sqrt n$ holds for all positive integers $n$.
MBMT Team Rounds, 2016
[hide=E stands for Euclid , L stands for Lobachevsky]they had two problem sets under those two names[/hide]
[b]E1.[/b] How many positive divisors does $72$ have?
[b]E2 / L2.[/b] Raymond wants to travel in a car with $3$ other (distinguishable) people. The car has $5$ seats: a driver’s seat, a passenger seat, and a row of $3$ seats behind them. If Raymond’s cello must be in a seat next to him, and he can’t drive, but every other person can, how many ways can everyone sit in the car?
[b]E3 / L3.[/b] Peter wants to make fruit punch. He has orange juice ($100\%$ orange juice), tropical mix ($25\%$ orange juice, $75\%$ pineapple juice), and cherry juice ($100\%$ cherry juice). If he wants his final mix to have $50\%$ orange juice, $10\%$ cherry juice, and $40\%$ pineapple juice, in what ratios should he mix the $3$ juices? Please write your answer in the form (orange):(tropical):(cherry), where the three integers are relatively prime.
[b]E4 / L4.[/b] Points $A, B, C$, and $D$ are chosen on a circle such that $m \angle ACD = 85^o$, $m\angle ADC = 40^o$,and $m\angle BCD = 60^o$. What is $m\angle CBD$?
[b]E5.[/b] $a, b$, and $c$ are positive real numbers. If $abc = 6$ and $a + b = 2$, what is the minimum possible value of $a + b + c$?
[b]E6 / L5.[/b] Circles $A$ and $B$ are drawn on a plane such that they intersect at two points. The centers of the two circles and the two intersection points lie on another circle, circle $C$. If the distance between the centers of circles $A$ and $B$ is $20$ and the radius of circle $A$ is $16$, what is the radius of circle $B$?
[b]E7.[/b] Point $P$ is inside rectangle $ABCD$. If $AP = 5$, $BP = 6$, and $CP = 7$, what is the length of $DP$?
[b]E8 / L6.[/b] For how many integers $n$ is $n^2 + 4$ divisible by $n + 2$?
[b]E9. [/b] How many of the perfect squares between $1$ and $10000$, inclusive, can be written as the sum of two triangular numbers? We define the $n$th triangular number to be $1 + 2 + 3 + ... + n$, where $n$ is a positive integer.
[b]E10 / L7.[/b] A small sphere of radius $1$ is sitting on the ground externally tangent to a larger sphere, also sitting on the ground. If the line connecting the spheres’ centers makes a $60^o$ angle with the ground, what is the radius of the larger sphere?
[b]E11 / L8.[/b] A classroom has $12$ chairs in a row and $5$ distinguishable students. The teacher wants to position the students in the seats in such a way that there is at least one empty chair between any two students. In how many ways can the teacher do this?
[b]E12 / L9.[/b] Let there be real numbers $a$ and $b$ such that $a/b^2 + b/a^2 = 72$ and $ab = 3$. Find the value of $a^2 + b^2$.
[b]E13 / L10.[/b] Find the number of ordered pairs of positive integers $(x, y)$ such that $gcd \, (x, y)+lcm \, (x, y) =x + y + 8$.
[b]E14 / L11.[/b] Evaluate $\sum_{i=1}^{\infty}\frac{i}{4^i}=\frac{1}{4} +\frac{2}{16} +\frac{3}{64} +...$
[b]E15 / L12.[/b] Xavier and Olivia are playing tic-tac-toe. Xavier goes first. How many ways can the game play out such that Olivia wins on her third move? The order of the moves matters.
[b]L1.[/b] What is the sum of the positive divisors of $100$?
[b]L13.[/b] Let $ABCD$ be a convex quadrilateral with $AC = 20$. Furthermore, let $M, N, P$, and $Q$ be the midpoints of $DA, AB, BC$, and $CD$, respectively. Let $X$ be the intersection of the diagonals of quadrilateral $MNPQ$. Given that $NX = 12$ and $XP = 10$, compute the area of $ABCD$.
[b]L14.[/b] Evaluate $(\sqrt3 + \sqrt5)^6$ to the nearest integer.
[b]L15.[/b] In Hatland, each citizen wears either a green hat or a blue hat. Furthermore, each citizen belongs to exactly one neighborhood. On average, a green-hatted citizen has $65\%$ of his neighbors wearing green hats, and a blue-hatted citizen has $80\%$ of his neighbors wearing blue hats. Each neighborhood has a different number of total citizens. What is the ratio of green-hatted to blue-hatted citizens in Hatland? (A citizen is his own neighbor.)
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2018 Israel National Olympiad, 4
The three-digit number 999 has a special property: It is divisible by 27, and its digit sum is also divisible by 27. The four-digit number 5778 also has this property, as it is divisible by 27 and its digit sum is also divisible by 27. How many four-digit numbers have this property?
2022 Brazil Team Selection Test, 3
Let $p$ be an odd prime number and suppose that $2^h \not \equiv 1 \text{ (mod } p\text{)}$ for all integer $1 \leq h \leq p-2$. Let $a$ be an even number such that $\frac{p}{2} < a < p$. Define the sequence $a_0, a_1, a_2, \ldots$ as $$a_0 = a, \qquad a_{n+1} = p -b_n, \qquad n = 0,1,2, \ldots,$$ where $b_n$ is the greatest odd divisor of $a_n$. Show that the sequence is periodic and determine its period.
2005 Taiwan TST Round 2, 1
Positive integers $a,b,c,d$ satisfy $a+c=10$ and \[\displaystyle S=\frac{a}{b} + \frac{c}{d} <1.\] Find the maximum value of $S$.
2009 Indonesia TST, 1
Prove that for all odd $ n > 1$, we have $ 8n \plus{} 4|C^{4n}_{2n}$.
2012 Dutch IMO TST, 1
For all positive integers $a$ and $b$, we dene $a @ b = \frac{a - b}{gcd(a, b)}$ .
Show that for every integer $n > 1$, the following holds:
$n$ is a prime power if and only if for all positive integers $m$ such that $m < n$, it holds that $gcd(n, n @m) = 1$.
2024 Serbia National Math Olympiad, 1
Find all positive integers $n$, such that if their divisors are $1=d_1<d_2<\ldots<d_k=n$ for $k \geq 4$, then the numbers $d_2-d_1, d_3-d_2, \ldots, d_k-d_{k-1}$ form a geometric progression in some order.
2020 Iranian Our MO, 5
Concider two sequences $x_n=an+b$, $y_n=cn+d$ where $a,b,c,d$ are natural numbers and $gcd(a,b)=gcd(c,d)=1$, prove that there exist infinite $n$ such that $x_n$, $y_n$ are both square-free.
[i]Proposed by Siavash Rahimi Shateranloo, Matin Yadollahi[/i] [b]Rated 3[/b]
2012 Bundeswettbewerb Mathematik, 1
given a positive integer $n$.
the set $\{ 1,2,..,2n \}$ is partitioned into $a_1<a_2<...<a_n $ and $b_1>b_2>...>b_n$.
find the value of : $ \sum_{i=1}^{n}|a_i - b_i| $
2005 JHMT, Team Round
[b]p1.[/b] Consider the following function $f(x) = \left(\frac12 \right)^x - \left(\frac12 \right)^{x+1}$.
Evaluate the infinite sum $f(1) + f(2) + f(3) + f(4) +...$
[b]p2.[/b] Find the area of the shape bounded by the following relations
$$y \le |x| -2$$
$$y \ge |x| - 4$$
$$y \le 0$$
where |x| denotes the absolute value of $x$.
[b]p3.[/b] An equilateral triangle with side length $6$ is inscribed inside a circle. What is the diameter of the largest circle that can fit in the circle but outside of the triangle?
[b]p4.[/b] Given $\sin x - \tan x = \sin x \tan x$, solve for $x$ in the interval $(0, 2\pi)$, exclusive.
[b]p5.[/b] How many rectangles are there in a $6$ by $6$ square grid?
[b]p6.[/b] Find the lateral surface area of a cone with radius $3$ and height $4$.
[b]p7.[/b] From $9$ positive integer scores on a $10$-point quiz, the mean is $ 8$, the median is $ 8$, and the mode is $7$. Determine the maximum number of perfect scores possible on this test.
[b]p8.[/b] If $i =\sqrt{-1}$, evaluate the following continued fraction:
$$2i +\frac{1}{2i +\frac{1}{2i+ \frac{1}{2i+...}}}$$
[b]p9.[/b] The cubic polynomial $x^3-px^2+px-6$ has roots $p, q$, and $r$. What is $(1-p)(1-q)(1-r)$?
[b]p10.[/b] (Variant on a Classic.) Gilnor is a merchant from Cutlass, a town where $10\%$ of the merchants are thieves. The police utilize a lie detector that is $90\%$ accurate to see if Gilnor is one of the thieves. According to the device, Gilnor is a thief. What is the probability that he really is one?
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2019 Dutch BxMO TST, 1
Prove that for each positive integer $n$ there are at most two pairs $(a, b)$ of positive integers with following two properties:
(i) $a^2 + b = n$,
(ii) $a+b$ is a power of two, i.e. there is an integer $k \ge 0$ such that $a+b = 2^k$.
2017 HMNT, 8
Find the number of quadruples $(a, b, c, d)$ of integers with absolute value at most $5$ such that $$(a^2 + b^2 + c^2 + d^2)^2 = (a + b + c + d)(a - b + c -d)((a - c)^2 + (b - d)^2).$$
2001 Turkey MO (2nd round), 1
Find all ordered triples of positive integers $(x,y,z)$ such that
\[3^{x}+11^{y}=z^{2}\]
2016 IMO Shortlist, N5
Let $a$ be a positive integer which is not a perfect square, and consider the equation \[k = \frac{x^2-a}{x^2-y^2}.\] Let $A$ be the set of positive integers $k$ for which the equation admits a solution in $\mathbb Z^2$ with $x>\sqrt{a}$, and let $B$ be the set of positive integers for which the equation admits a solution in $\mathbb Z^2$ with $0\leq x<\sqrt{a}$. Show that $A=B$.
1998 Romania National Olympiad, 3
Find the rational roots (if any) of the equation $$abx^2 + (a^2 + b^2 )x +1 = 0 , \,\,\,\, (a, b \in Z).$$
1965 German National Olympiad, 5
Determine all triples of nonzero decimal digits $(x,y,z)$ for which the equality $\sqrt{ \underbrace{xxx...x}_{2n}- \underbrace{yy...y}_{n}}= \underbrace{zzz...z}_{n}$ holds for at least two different natural numbers $n$.
2017 Dutch BxMO TST, 1
Let $n$ be an even positive integer. A sequence of $n$ real numbers is called complete if for every integer $m$ with $1 \leq m \leq n$ either the sum of the first $m$ terms of the sum or the sum of the last $m$ terms is integral. Determine
the minimum number of integers in a complete sequence of $n$ numbers.
2024 Rioplatense Mathematical Olympiad, 3
Let $a$, $b$, $c$ be positive integers. Prove that for infinitely many positive odd integers $n$, there exists an integer $m > n$ such that $a^n + b^n + c^n$ divides $a^m + b^m + c^m$.
2014 CentroAmerican, 3
A positive integer $n$ is [i]funny[/i] if for all positive divisors $d$ of $n$, $d+2$ is a prime number. Find all funny numbers with the largest possible number of divisors.
2019 OMMock - Mexico National Olympiad Mock Exam, 2
Find all pairs of positive integers $(m, n)$ such that $m^2-mn+n^2+1$ divides both numbers $3^{m+n}+(m+n)!$ and $3^{m^3+n^3}+m+n$.
[i]Proposed by Dorlir Ahmeti[/i]
1998 Chile National Olympiad, 1
Find all pairs of naturals $a,b$ with $a <b$, such that the sum of the naturals greater than $a$ and less than $ b$ equals $1998$.
2014 Postal Coaching, 3
Find all ordered triplets of positive integers $(a,\ b,\ c)$ such that $2^a+3^b+1=6^c$.
2016 CHMMC (Fall), 10
For a positive integer $n$, let $p(n)$ denote the number of prime divisors of $n$, counting multiplicity (i.e. $p(12)=3$). A sequence $a_n$ is defined such that $a_0 = 2$ and for $n > 0$, $a_n = 8^{p(a_{n-1})} + 2$. Compute $$\sum_{n=0}^{\infty} \frac{a_n}{2^n}$$