Found problems: 15460
2014 Online Math Open Problems, 28
Let $S$ be the set of all pairs $(a,b)$ of real numbers satisfying $1+a+a^2+a^3 = b^2(1+3a)$ and $1+2a+3a^2 = b^2 - \frac{5}{b}$. Find $A+B+C$, where \[
A = \prod_{(a,b) \in S} a
, \quad
B = \prod_{(a,b) \in S} b
, \quad \text{and} \quad
C = \sum_{(a,b) \in S} ab.
\][i]Proposed by Evan Chen[/i]
2024 Argentina National Olympiad Level 2, 6
A list of $7$ numbers is constructed using the following procedure: each number in the list is equal to the sum of the previous number and the previous number written in reverse order. For example, if a number in the list is $23544$, the next number is $68076 = 23544 + 44532$. (It is forbidden for any number in the list to start with $0$, although the reversed numbers may start with $0$.) Decide whether it is possible to choose the first number of the list so that the seventh number is a prime number.
2015 Thailand TSTST, 2
Fix a sequence $ a_1,a_2,a_3,... $ of integers satisfying the following condition:for all prime numbers $ p $ and all positive integers $ k $, we have $ a_{pk+1}=pa_k-3a_p+13 $.Determine all possible values of $ a_{2013} $.
2019 Turkey MO (2nd round), 6
Given an integer $n>2$ and an integer $a$, if there exists an integer $d$ such that $n\mid a^d-1$ and $n\nmid a^{d-1}+\cdots+1$, we say [i]$a$ is $n-$separating[/i]. Given any n>2, let the [i]defect of $n$[/i] be defined as the number of integers $a$ such that $0<a<n$, $(a,n)=1$, and $a$ is not [i] $n-$separating[/i]. Determine all integers $n>2$ whose defect is equal to the smallest possible value.
1999 Greece National Olympiad, 2
A right triangle has integer side lengths, and the sum of its area and the length of one of its legs equals $75$. Find the side lengths of the triangle.
2017-IMOC, A2
Find all functions $f:\mathbb N\to\mathbb N$ such that
\begin{align*}
x+f(y)&\mid f(y+f(x))\\
f(x)-2017&\mid x-2017\end{align*}
2012 Germany Team Selection Test, 1
Consider a polynomial $P(x) = \prod^9_{j=1}(x+d_j),$ where $d_1, d_2, \ldots d_9$ are nine distinct integers. Prove that there exists an integer $N,$ such that for all integers $x \geq N$ the number $P(x)$ is divisible by a prime number greater than 20.
[i]Proposed by Luxembourg[/i]
1995 South africa National Olympiad, 1
Prove that there are no integers $m$ and $n$ such that
\[19m^2+95mn+2000n^2=1995.\]
1963 Poland - Second Round, 3
Solve the system of equations in integers
$$x + y + z = 3$$
$$x^3 + y^3 + z^3 = 3$$
2009 Canadian Mathematical Olympiad Qualification Repechage, 8
Determine an infinite family of quadruples $(a, b, c, d)$ of positive integers, each of which is a solution to $a^4+b^5+c^6=d^7$.
1978 IMO Shortlist, 17
Prove that for any positive integers $x, y, z$ with $xy-z^2 = 1$ one can find non-negative integers $a, b, c, d$ such that $x = a^2 + b^2, y = c^2 + d^2, z = ac + bd$.
Set $z = (2q)!$ to deduce that for any prime number $p = 4q + 1$, $p$ can be represented as the sum of squares of two integers.
2021 Serbia Team Selection Test, P6
Let $S=\{1,2, \ldots ,10^{10}\}$. Find all functions $f:S \rightarrow S$, such that $$f(x+1)=f(f(x))+1 \pmod {10^{10}}$$ for each $x \in S$ (assume $f(10^{10}+1)=f(1)$).
2020 Thailand TST, 3
Let $a$ be a positive integer. We say that a positive integer $b$ is [i]$a$-good[/i] if $\tbinom{an}{b}-1$ is divisible by $an+1$ for all positive integers $n$ with $an \geq b$. Suppose $b$ is a positive integer such that $b$ is $a$-good, but $b+2$ is not $a$-good. Prove that $b+1$ is prime.
2006 May Olympiad, 3
Write a positive integer in each box so that:
All six numbers are different.
The sum of the six numbers is $100$.
If each number is multiplied by its neighbor (in a clockwise direction) and the six results of those six multiplications are added, the smallest possible value is obtained.
Explain why a lower value cannot be obtained.
[img]https://cdn.artofproblemsolving.com/attachments/7/1/6fdadd6618f91aa03cdd6720cc2d6ee296f82b.gif[/img]
2018 JBMO Shortlist, NT2
Find all ordered pairs of positive integers $(m,n)$ such that :
$125*2^n-3^m=271$
2023 Mid-Michigan MO, 7-9
[b]p1.[/b] Three camps are located in the vertices of an equilateral triangle. The roads connecting camps are along the sides of the triangle. Captain America is inside the triangle and he needs to know the distances between camps. Being able to see the roads he has found that the sum of the shortest distances from his location to the roads is 50 miles. Can you help Captain America to evaluate the distances between the camps?
[b]p2.[/b] $N$ regions are located in the plane, every pair of them have a non-empty overlap. Each region is a connected set, that means every two points inside the region can be connected by a curve all points of which belong to the region. Iron Man has one charge remaining to make a laser shot. Is it possible for him to make the shot that goes through all $N$ regions?
[b]p3.[/b] Money in Wonderland comes in $\$5$ and $\$7$ bills.
(a) What is the smallest amount of money you need to buy a slice of pizza that costs $\$1$ and get back your change in full? (The pizza man has plenty of $\$5$ and $\$7$ bills.) For example, having $\$7$ won't do since the pizza man can only give you $\$5$ back.
(b) Vending machines in Wonderland accept only exact payment (do not give back change). List all positive integer numbers which CANNOT be used as prices in such vending machines. (That is, find the sums of money that cannot be paid by exact change.)
[b]p4.[/b] (a) Put $5$ points on the plane so that each $3$ of them are vertices of an isosceles triangle (i.e., a triangle with two equal sides), and no three points lie on the same line.
(b) Do the same with $6$ points.
[b]p5.[/b] Numbers $1,2,3,…,100$ are randomly divided in two groups $50$ numbers in each. In the first group the numbers are written in increasing order and denoted $a_1,a_2, ..., a_{50}$. In the second group the numberss are written in decreasing order and denoted $b_1,b_2, ..., b_{50}$. Thus $a_1<a_2<...<a_{50}$ and $ b_1>b_2>...>b_{50}$. Evaluate $|a_1-b_1|+|a_2-b_2|+...+|a_{50}-b_{50}|$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2010 Malaysia National Olympiad, 3
Let $\gamma=\alpha \times \beta$ where \[\alpha=999 \cdots 9\] (2010 '9') and \[\beta=444 \cdots 4\] (2010 '4')
Find the sum of digits of $\gamma$.
1999 Taiwan National Olympiad, 2
Let $a_{1},a_{2},...,a_{1999}$ be a sequence of nonnegative integers such that for any $i,j$ with $i+j\leq 1999$ , $a_{i}+a_{j}\leq a_{i+j}\leq a_{i}+a_{j}+1$. Prove that there exists a real number $x$ such that $a_{n}=[nx]\forall n$.
2010 USA Team Selection Test, 5
Define the sequence $a_1, a_2, a_3, \ldots$ by $a_1 = 1$ and, for $n > 1$,
\[a_n = a_{\lfloor n/2 \rfloor} + a_{\lfloor n/3 \rfloor} + \ldots + a_{\lfloor n/n \rfloor} + 1.\]
Prove that there are infinitely many $n$ such that $a_n \equiv n \pmod{2^{2010}}$.
2018 China Team Selection Test, 6
Find all pairs of positive integers $(x, y)$ such that $(xy+1)(xy+x+2)$ be a perfect square .
2018 Rio de Janeiro Mathematical Olympiad, 6
Two perfect squares are [i]friends[/i] if one is obtained from the other adding the digit $1$ at the left.
For instance, $1225 = 35^2$ and $225 = 15^2$ are friends.
Prove that there are infinite pairs of odd perfect squares that are friends.
2012 Online Math Open Problems, 43
An integer $x$ is selected at random between 1 and $2011!$ inclusive. The probability that $x^x - 1$ is divisible by $2011$ can be expressed in the form $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m$.
[i]Author: Alex Zhu[/i]
Kvant 2021, M2636
We call a natural number $p{}$ [i]simple[/i] if for any natural number $k{}$ such that $2\leqslant k\leqslant \sqrt{p}$ the inequality $\{p/k\}\geqslant 0,01$ holds. Is the set of simple prime numbers finite?
[i]Proposed by M. Didin[/i]
1969 IMO Longlists, 61
$(SWE 4)$ Let $a_0, a_1, a_2, \cdots$ be determined with $a_0 = 0, a_{n+1} = 2a_n + 2^n$. Prove that if $n$ is power of $2$, then so is $a_n$
2014 Greece Junior Math Olympiad, 2
Let $p$ prime and $m$ a positive integer. Determine all pairs $( p,m)$ satisfying the equation: $ p(p+m)+p=(m+1)^3$