This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2016 PUMaC Individual Finals A, 2

Let $m, k$, and $c$ be positive integers with $k > c$, and let $\lambda$ be a positive, non-integer real root of the equation $\lambda^{m+1} - k \lambda^m - c = 0$. Let $f : Z^+ \to Z$ be defined by $f(n) = \lfloor \lambda n \rfloor$ for all $n \in Z^+$. Show that $f^{m+1}(n) \equiv cn - 1$ (mod $k$) for all $n \in Z^+$. (Here, $Z^+$ denotes the set of positive integers, $ \lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$, and $f^{m+1}(n) = f(f(... f(n)...))$ where $f$ appears $m + 1$ times.)

2006 Vietnam National Olympiad, 6

Let $S$ be a set of 2006 numbers. We call a subset $T$ of $S$ [i]naughty[/i] if for any two arbitrary numbers $u$, $v$ (not neccesary distinct) in $T$, $u+v$ is [i]not[/i] in $T$. Prove that 1) If $S=\{1,2,\ldots,2006\}$ every naughty subset of $S$ has at most 1003 elements; 2) If $S$ is a set of 2006 arbitrary positive integers, there exists a naughty subset of $S$ which has 669 elements.

2015 Paraguay Juniors, 2

Consider numbers of the form $1a1$, where $a$ is a digit. How many pairs of such numbers are there such that their sum is also a palindrome? [i]Note: A palindrome is a number which reads the same from left to right and from right to left. Examples: $353$, $91719$.[/i]

2012 Grigore Moisil Intercounty, 2

[b]a)[/b] Prove that $$ k+\frac{1}{2}-\frac{1}{8k}<\sqrt{k^2+k}<k+\frac{1}{2}-\frac{1}{8k}+\frac{1}{16k^2} , $$ for any natural number $ k. $ [b]b)[/b] Prove that there exists four numbers $ \alpha,\beta,\gamma,\delta\in\{0,1,2,3,4,5,6,7,8,9\} $ such that $$ \left\lfloor\sum_{k=1}^{2012} \sqrt{k(k+1)\left( k^2+k+1 \right)}\right\rfloor =\underbrace{\ldots\alpha \beta\gamma\delta}_{\text{decimal form}} $$ and $ \alpha +\delta =\gamma . $

1986 AIME Problems, 5

What is that largest positive integer $n$ for which $n^3+100$ is divisible by $n+10$?

1993 Baltic Way, 1

$a_1a_2a_3$ and $a_3a_2a_1$ are two three-digit decimal numbers, with $a_1$ and $a_3$ different non-zero digits. Squares of these numbers are five-digit numbers $b_1b_2b_3b_4b_5$ and $b_5b_4b_3b_2b_1$ respectively. Find all such three-digit numbers.

2008 Tournament Of Towns, 2

Can it happen that the least common multiple of $1, 2,... , n$ is $2008$ times the least common multiple of $1, 2, ... , m$ for some positive integers $m$ and $n$ ?

2010 Contests, 2

Positive rational number $a$ and $b$ satisfy the equality \[a^3 + 4a^2b = 4a^2 + b^4.\] Prove that the number $\sqrt{a}-1$ is a square of a rational number.

2023 UMD Math Competition Part II, 3

Let $p$ be a prime, and $n > p$ be an integer. Prove that \[ \binom{n+p-1}{p} - \binom{n}{p} \] is divisible by $n$.

2025 Taiwan Mathematics Olympiad, 3

For any pair of coprime positive integers $a$ and $b$, define $f(a, b)$ to be the smallest nonnegative integer $k$ such that $b \mid ak+1$. Prove that if a and b are coprime positive integers satisfying $$f(a, b) - f(b, a) = 2,$$ then there exists a prime number $p$ such that $p^2\mid a + b$. [i]Proposed by usjl[/i]

2022 BMT, 5

Given a positive integer $n,$ let $s(n)$ denote the sum of the digits of $n.$ Compute the largest positive integer $n$ such that $n = s(n)^2 + 2s(n) - 2.$

2010 Saint Petersburg Mathematical Olympiad, 4

Natural number $N$ is given. Let $p_N$ - biggest prime, that $ \leq N$. On every move we replace $N$ by $N-p_N$. We repeat this until we get $0$ or $1$. If we get $1$ then $N$ is called as good, else is bad. For example, $95$ is good because we get $95 \to 6 \to 1$. Prove that among numbers from $1$ to $1000000$ there are between one quarter and half good numbers

1988 All Soviet Union Mathematical Olympiad, 475

Show that there are infinitely many odd composite numbers in the sequence $1^1, 1^1 + 2^2, 1^1 + 2^2 + 3^3, 1^1 + 2^2 + 3^3 + 4^4, ...$ .

2009 BMO TST, 3

For the give functions in $\mathbb{N}$: [b](a)[/b] Euler's $\phi$ function ($\phi(n)$- the number of natural numbers smaller than $n$ and coprime with $n$); [b](b)[/b] the $\sigma$ function such that the $\sigma(n)$ is the sum of natural divisors of $n$. solve the equation $\phi(\sigma(2^x))=2^x$.

2017 India IMO Training Camp, 3

Let $a$ be a positive integer which is not a perfect square, and consider the equation \[k = \frac{x^2-a}{x^2-y^2}.\] Let $A$ be the set of positive integers $k$ for which the equation admits a solution in $\mathbb Z^2$ with $x>\sqrt{a}$, and let $B$ be the set of positive integers for which the equation admits a solution in $\mathbb Z^2$ with $0\leq x<\sqrt{a}$. Show that $A=B$.

1994 China Team Selection Test, 2

Given distinct prime numbers $p$ and $q$ and a natural number $n \geq 3$, find all $a \in \mathbb{Z}$ such that the polynomial $f(x) = x^n + ax^{n-1} + pq$ can be factored into 2 integral polynomials of degree at least 1.

2011 Estonia Team Selection Test, 2

Let $n$ be a positive integer. Prove that for each factor $m$ of the number $1+2+\cdots+n$ such that $m\ge n$, the set $\{1,2,\ldots,n\}$ can be partitioned into disjoint subsets, the sum of the elements of each being equal to $m$. [b]Edit[/b]:Typographical error fixed.

2011 Abels Math Contest (Norwegian MO), 1

Let $n$ be the number that is produced by concatenating the numbers $1, 2,... , 4022$, that is, $n = 1234567891011...40214022$. a. Show that $n$ is divisible by $3$. b. Let $a_1 = n^{2011}$, and let $a_i$ be the sum of the digits of $a_{i-1}$ for $i > 1$. Find $a_4$

2016 APMO, 2

A positive integer is called [i]fancy[/i] if it can be expressed in the form $$2^{a_1}+2^{a_2}+ \cdots+ 2^{a_{100}},$$ where $a_1,a_2, \cdots, a_{100}$ are non-negative integers that are not necessarily distinct. Find the smallest positive integer $n$ such that no multiple of $n$ is a [i]fancy[/i] number. [i]Senior Problems Committee of the Australian Mathematical Olympiad Committee[/i]

1991 National High School Mathematics League, 3

Let $a$ be a positive integer, $a<100$, and $a^3+23$ is a multiple of $24$. Then, the number of such $a$ is $\text{(A)}4\qquad\text{(B)}5\qquad\text{(C)}9\qquad\text{(D)}10$

2012 India IMO Training Camp, 2

Let $S$ be a nonempty set of primes satisfying the property that for each proper subset $P$ of $S$, all the prime factors of the number $\left(\prod_{p\in P}p\right)-1$ are also in $S$. Determine all possible such sets $S$.

2016 CMIMC, 10

Let $f:\mathbb{N}\mapsto\mathbb{R}$ be the function \[f(n)=\sum_{k=1}^\infty\dfrac{1}{\operatorname{lcm}(k,n)^2}.\] It is well-known that $f(1)=\tfrac{\pi^2}6$. What is the smallest positive integer $m$ such that $m\cdot f(10)$ is the square of a rational multiple of $\pi$?

1982 IMO Longlists, 31

Prove that if $n$ is a positive integer such that the equation \[ x^3-3xy^2+y^3=n \] has a solution in integers $x,y$, then it has at least three such solutions. Show that the equation has no solutions in integers for $n=2891$.

1983 IMO Longlists, 55

For every $a \in \mathbb N$ denote by $M(a)$ the number of elements of the set \[ \{ b \in \mathbb N | a + b \text{ is a divisor of } ab \}.\] Find $\max_{a\leq 1983} M(a).$

2023 Indonesia TST, N

Given an integer $a>1$. Prove that there exists a sequence of positive integers \[ n_1, n_2, n_3, \ldots \] Such that \[ \gcd(a^{n_i+1} + a^{n_i} - 1, \ a^{n_j + 1} + a^{n_j} - 1) =1 \] For every $i \neq j$.