This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2022 Austrian MO National Competition, 3

Lisa writes a positive whole number in the decimal system on the blackboard and now makes in each turn the following: The last digit is deleted from the number on the board and then the remaining shorter number (or 0 if the number was one digit) becomes four times the number deleted number added. The number on the board is now replaced by the result of this calculation. Lisa repeats this until she gets a number for the first time was on the board. (a) Show that the sequence of moves always ends. (b) If Lisa begins with the number $53^{2022} - 1$, what is the last number on the board? Example: If Lisa starts with the number $2022$, she gets $202 + 4\cdot 2 = 210$ in the first move and overall the result $$2022 \to 210 \to 21 \to 6 \to 24 \to 18 \to 33 \to 15 \to 21$$. Since Lisa gets $21$ for the second time, the turn order ends. [i](Stephan Pfannerer)[/i]

2023 BMT, 4

Given positive integers $a \ge 2$ and $k$, let $m_a(k)$ denote the remainder when $k$ is divided by $a$. Compute the number of positive integers, $n$, less than 500 such that $m_2(m_5(m_{11}(n))) = 1$.

2011 Princeton University Math Competition, A6

Let $a$ and $b$ be positive integers such that $a + bz = x^3 + y^4$ has no solutions for any integers $x, y, z$, with $b$ as small as possible, and $a$ as small as possible for the minimum $b$. Find $ab$.

2011 Serbia JBMO TST, 2

$p(n) $ is a product of all digits of n.Calculate: $ p(1001) + p(1002) + ... + p(2011) $

2013 All-Russian Olympiad, 3

$100$ distinct natural numbers $a_1, a_2, a_3, \ldots, a_{100}$ are written on the board. Then, under each number $a_i$, someone wrote a number $b_i$, such that $b_i$ is the sum of $a_i$ and the greatest common factor of the other $99$ numbers. What is the least possible number of distinct natural numbers that can be among $b_1, b_2, b_3, \ldots, b_{100}$?

1929 Eotvos Mathematical Competition, 1

In how many ways can the sum of 100 fillér be made up with coins of denominations l, 2, 10, 20 and 50 fillér?

2025 Kosovo National Mathematical Olympiad`, P3

Tags: set , number theory
A subset $S$ of the natural numbers is called [i]dense [/i] for every $7$ consecutive natural numbers, at least $5$ of them are in $S$. Show that there exists a dense subset for which the equation $a^2+b^2=c^2$ has no solution for $a,b,c \in S$.

2006 Thailand Mathematical Olympiad, 14

Find the smallest positive integer $n$ such that $2549 | n^{2545} - 2$.

1996 All-Russian Olympiad, 5

At the vertices of a cube are written eight pairwise distinct natural numbers, and on each of its edges is written the greatest common divisor of the numbers at the endpoints of the edge. Can the sum of the numbers written at the vertices be the same as the sum of the numbers written at the edges? [i]A. Shapovalov[/i]

2011 Purple Comet Problems, 29

Let $S$ be a randomly selected four-element subset of $\{1, 2, 3, 4, 5, 6, 7, 8\}$. Let $m$ and $n$ be relatively prime positive integers so that the expected value of the maximum element in $S$ is $\dfrac{m}{n}$. Find $m + n$.

2022 Brazil EGMO TST, 8

Find all pairs $(a,b)$ of positive integers, such that for [b]every[/b] $n$ positive integer, the equality $a^n+b^n=c_n^{n+1}$ is true, for some $c_n$ positive integer.

2012 Gheorghe Vranceanu, 1

Find the natural numbers $ n $ which have the property that $ \log_2 \left( 1+2^n \right) $ is rational. [i]Cornel Berceanu[/i]

2011 Saudi Arabia Pre-TST, 1.4

Let $f_n = 2^{2^n}+ 1$, $n = 1,2,3,...$, be the Fermat’s numbers. Find the least real number $C$ such that $$\frac{1}{f_1}+\frac{2}{f_2}+\frac{2^2}{f_3}+...+\frac{2^{n-1}}{f_n} <C$$ for all positive integers $n$

2010 May Olympiad, 1

Determine the smallest positive integer that has all its digits equal to $4$, and is a multiple of $169$.

2000 Cono Sur Olympiad, 1

Call a positive integer [i]descending[/i] if, reading left to right, each of its digits (other than its leftmost) is less than or equal to the previous digit. For example, $4221$ and $751$ are descending while $476$ and $455$ are not descending. Determine whether there exists a positive integer $n$ for which $16^n$ is descending.

2019 ABMC, Accuracy

[b]p1.[/b] Compute $45\times 45 - 6$. [b]p2.[/b] Consecutive integers have nice properties. For example, $3$, $4$, $5$ are three consecutive integers, and $8$, $9$, $10$ are three consecutive integers also. If the sum of three consecutive integers is $24$, what is the smallest of the three numbers? [b]p3.[/b] How many positive integers less than $25$ are either multiples of $2$ or multiples of $3$? [b]p4.[/b] Charlotte has $5$ positive integers. Charlotte tells you that the mean, median, and unique mode of his five numbers are all equal to $10$. What is the largest possible value of the one of Charlotte's numbers? [b]p5.[/b] Mr. Meeseeks starts with a single coin. Every day, Mr. Meeseeks goes to a magical coin converter where he can either exchange $1$ coin for $5$ coins or exchange $5$ coins for $3$ coins. What is the least number of days Mr. Meeseeks needs to end with $15$ coins? [b]p6.[/b] Twelve years ago, Violet's age was twice her sister Holo's age. In $7$ years, Holo's age will be $13$ more than a third of Violet's age. $3$ years ago, Violet and Holo's cousin Rindo's age was the sum of their ages. How old is Rindo? [b]p7.[/b] In a $2 \times 3$ rectangle composed of $6$ unit squares, let $S$ be the set of all points $P$ in the rectangle such that a unit circle centered at $P$ covers some point in exactly $3$ of the unit squares. Find the area of the region $S$. For example, the diagram below shows a valid unit circle in a $2 \times 3$ rectangle. [img]https://cdn.artofproblemsolving.com/attachments/d/9/b6e00306886249898c2bdb13f5206ced37d345.png[/img] [b]p8.[/b] What are the last four digits of $2^{1000}$? [b]p9.[/b] There is a point $X$ in the center of a $2 \times 2 \times 2$ box. Find the volume of the region of points that are closer to $X$ than to any of the vertices of the box. [b]p10.[/b] Evaluate $\sqrt{37 \cdot 41 \cdot 113 \cdot 290 - 4319^2}$ [b]p11.[/b] (Estimation) A number is abundant if the sum of all its divisors is greater than twice the number. One such number is $12$, because $1+2+3+4+6+12 = 28 > 24$: How many abundant positive integers less than $20190$ are there? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2020 Balkan MO Shortlist, N4

Let $a_1=2$ and, for every positive integer $n$, let $a_{n+1}$ be the smallest integer strictly greater than $a_n$ that has more positive divisors than $a_n$. Prove that $2a_{n+1}=3a_n$ only for finitely many indicies $n$. [i] Proposed by Ilija Jovčevski, North Macedonia[/i]

2023 Brazil National Olympiad, 5

An integer $n \geq 3$ is [i]fabulous[/i] when there exists an integer $a$ with $2 \leq a \leq n - 1$ for which $a^n - a$ is divisible by $n$. Find all the [i]fabulous[/i] integers.

2019 IFYM, Sozopol, 3

The natural number $n>1$ is such that there exist $a\in \mathbb{N}$ and a prime number $q$ which satisfy the following conditions: 1) $q$ divides $n-1$ and $q>\sqrt{n}-1$ 2) $n$ divides $a^{n-1}-1$ 3) $gcd(a^\frac{n-1}{q}-1,n)=1$. Is it possible for $n$ to be a composite number?

2003 Estonia National Olympiad, 2

Find all possible integer values of $\frac{m^2+n^2}{mn}$ where m and n are integers.

2004 Hong kong National Olympiad, 4

Let $S=\{1,2,...,100\}$ . Find number of functions $f: S\to S$ satisfying the following conditions a)$f(1)=1$ b)$f$ is bijective c)$f(n)=f(g(n))f(h(n))\forall n\in S$, where $g(n),h(n)$ are positive integer numbers such that $g(n)\leq h(n),n=g(n)h(n)$ that minimize $h(n)-g(n)$.

2021 Nigerian Senior MO Round 2, 3

On a certain board, fractions are always written in their lowest form. Pionaj starts with 2 random positive fractions. After every minute,he replaces one of the previous 2 fractions (at random) with a new fraction that is equal to the sum of their numerators divided by the sum of their denominators. Given that he continues this indefinitely, show that eventually all the resulting fractions would be in their lowest forms even before writing them on the board(recall that he has to reduce each fration to their lowest form beore writing it on the board for the next operation). (for example starting with $\frac{15}{7}$ and $\frac{10}{3}$ he may replace it with $\frac{5}{2}$

2021 Malaysia IMONST 1, Juniors

IMONST = [b]I[/b]nternational [b]M[/b]athematical [b]O[/b]lympiad [b]N[/b]ational [b]S[/b]election [b]T[/b]est Malaysia 2021 Round 1 Juniors Time: 2.5 hours [hide=Rules] $\bullet$ For each problem you have to submit the answer only. The answer to each problem is a non-negative integer. $\bullet$ No mark is deducted for a wrong answer. $\bullet$ The maximum number of points is (1 + 2 + 3 + 4) x 5 = 50 points.[/hide] [b]Part A[/b] (1 point each) p1. Adam draws $7$ circles on a paper, with radii $ 1$ cm, $2$ cm, $3$ cm, $4$ cm, $5$ cm, $6$ cm, and $7$ cm. The circles do not intersect each other. He colors some circles completely red, and the rest of the circles completely blue. What is the minimum possible difference (in cm$^2$) between the total area of the red circles and the total area of the blue circles? p2. The number $2021$ has a special property that the sum of any two neighboring digits in the number is a prime number ($2 + 0 = 2$, $0 + 2 = 2$, and $2 + 1 = 3$ are all prime numbers). Among numbers from $2021$ to $2041$, how many of them have this property? p3. Clarissa opens a pet shop that sells three types of pets: goldshes, hamsters, and parrots. The pets inside the shop together have a total of $14$ wings, $24$ heads, and $62$ legs. How many goldshes are there inside Clarissa's shop? p4. A positive integer $n$ is called special if $n$ is divisible by $4$, $n+1$ is divisible by $5$, and $n + 2$ is divisible by $6$. How many special integers smaller than $1000$ are there? p5. Suppose that this decade begins on $ 1$ January $2020$ (which is a Wednesday) and the next decade begins on $ 1$ January $2030$. How many Wednesdays are there in this decade? [b]Part B[/b] (2 points each) p6. Given an isosceles triangle $ABC$ with $AB = AC$. Let D be a point on $AB$ such that $CD$ is the bisector of $\angle ACB$. If $CB = CD$, what is $\angle ADC$, in degrees? p7. Determine the number of isosceles triangles with the following properties: all the sides have integer lengths (in cm), and the longest side has length $21$ cm. p8. Haz marks $k$ points on the circumference of a circle. He connects every point to every other point with straight lines. If there are $210$ lines formed, what is $k$? p9. What is the smallest positive multiple of $24$ that can be written using digits $4$ and $5$ only? p10. In a mathematical competition, there are $2021$ participants. Gold, silver, and bronze medals are awarded to the winners as follows: (i) the number of silver medals is at least twice the number of gold medals, (ii) the number of bronze medals is at least twice the number of silver medals, (iii) the number of all medals is not more than $40\%$ of the number of participants. The competition director wants to maximize the number of gold medals to be awarded based on the given conditions. In this case, what is the maximum number of bronze medals that can be awarded? [b]Part C[/b] (3 points each) p11. Dinesh has several squares and regular pentagons, all with side length $ 1$. He wants to arrange the shapes alternately to form a closed loop (see diagram). How many pentagons would Dinesh need to do so? [img]https://cdn.artofproblemsolving.com/attachments/8/9/6345d7150298fe26cfcfba554656804ed25a6d.jpg [/img] p12. If $x +\frac{1}{x} = 5$, what is the value of $x^3 +\frac{1}{x^3} $ ? p13. There are $10$ girls in a class, all with different heights. They want to form a queue so that no girl stands directly between two girls shorter than her. How many ways are there to form the queue? p14. The two diagonals of a rhombus have lengths with ratio $3 : 4$ and sum $56$. What is the perimeter of the rhombus? p15. How many integers $n$ (with $1 \le n \le 2021$) have the property that $8n + 1$ is a perfect square? [b]Part D[/b] (4 points each) p16. Given a segment of a circle, consisting of a straight edge and an arc. The length of the straight edge is $24$. The length between the midpoint of the straight edge and the midpoint of the arc is $6$. Find the radius of the circle. p17. Sofia has forgotten the passcode of her phone. She only remembers that it has four digits and that the product of its digits is $18$. How many passcodes satisfy these conditions? p18. A tree grows in the following manner. On the first day, one branch grows out of the ground. On the second day, a leaf grows on the branch and the branch tip splits up into two new branches. On each subsequent day, a new leaf grows on every existing branch, and each branch tip splits up into two new branches. How many leaves does the tree have at the end of the tenth day? p19. Find the sum of (decimal) digits of the number $(10^{2021} + 2021)^2$? p20. Determine the number of integer solutions $(x, y, z)$, with $0 \le x, y, z \le 100$, for the equation$$(x - y)^2 + (y + z)^2 = (x + y)^2 + (y - z)^2.$$

2007 Croatia Team Selection Test, 1

Find integral solutions to the equation \[(m^{2}-n^{2})^{2}=16n+1.\]

2016 China Team Selection Test, 4

Let $c,d \geq 2$ be naturals. Let $\{a_n\}$ be the sequence satisfying $a_1 = c, a_{n+1} = a_n^d + c$ for $n = 1,2,\cdots$. Prove that for any $n \geq 2$, there exists a prime number $p$ such that $p|a_n$ and $p \not | a_i$ for $i = 1,2,\cdots n-1$.