This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2005 Iran MO (3rd Round), 5

Let $a,b,c\in \mathbb N$ be such that $a,b\neq c$. Prove that there are infinitely many prime numbers $p$ for which there exists $n\in\mathbb N$ that $p|a^n+b^n-c^n$.

2020-IMOC, N2

Find all positive integers $N$ such that the following holds: There exist pairwise coprime positive integers $a,b,c$ with $$\frac1a+\frac1b+\frac1c=\frac N{a+b+c}.$$

1927 Eotvos Mathematical Competition, 2

Find the sum of all distinct four-digit numbers that contain only the digits $1, 2, 3, 4,5$, each at most once.

2012 ELMO Shortlist, 6

Consider a directed graph $G$ with $n$ vertices, where $1$-cycles and $2$-cycles are permitted. For any set $S$ of vertices, let $N^{+}(S)$ denote the out-neighborhood of $S$ (i.e. set of successors of $S$), and define $(N^{+})^k(S)=N^{+}((N^{+})^{k-1}(S))$ for $k\ge2$. For fixed $n$, let $f(n)$ denote the maximum possible number of distinct sets of vertices in $\{(N^{+})^k(X)\}_{k=1}^{\infty}$, where $X$ is some subset of $V(G)$. Show that there exists $n>2012$ such that $f(n)<1.0001^n$. [i]Linus Hamilton.[/i]

2001 VJIMC, Problem 2

Prove that for any prime $p\ge5$, the number $$\sum_{0<k<\frac{2p}3}\binom pk$$is divisible by $p^2$.

2013 All-Russian Olympiad, 1

Does exist natural $n$, such that for any non-zero digits $a$ and $b$ \[\overline {ab}\ |\ \overline {anb}\ ?\] (Here by $ \overline {x \ldots y} $ denotes the number obtained by concatenation decimal digits $x$, $\dots$, $y$.) [i]V. Senderov[/i]

2010 Swedish Mathematical Competition, 4

We create a sequence by setting $a_1 = 2010$ and requiring that $a_n-a_{n-1}\leq n$ and $a_n$ is also divisible by $n$. Show that $a_{100},a_{101},a_{102},\dots$ form an arithmetic sequence.

2013 Online Math Open Problems, 29

Let $\phi(n)$ denote the number of positive integers less than or equal to $n$ that are relatively prime to $n$, and let $d(n)$ denote the number of positive integer divisors of $n$. For example, $\phi(6) = 2$ and $d(6) = 4$. Find the sum of all odd integers $n \le 5000$ such that $n \mid \phi(n) d(n)$. [i]Alex Zhu[/i]

2022 Iran Team Selection Test, 6

Let $m,n$ and $a_1,a_2,\dots,a_m$ be arbitrary positive integers. Ali and Mohammad Play the following game. At each step, Ali chooses $b_1,b_2,\dots,b_m \in \mathbb{N}$ and then Mohammad chosses a positive integers $s$ and obtains a new sequence $\{c_i=a_i+b_{i+s}\}_{i=1}^m$, where $$b_{m+1}=b_1,\ b_{m+2}=b_2, \dots,\ b_{m+s}=b_s$$ The goal of Ali is to make all the numbers divisible by $n$ in a finite number of steps. FInd all positive integers $m$ and $n$ such that Ali has a winning strategy, no matter how the initial values $a_1, a_2,\dots,a_m$ are. [hide=clarification] after we create the $c_i$ s, this sequence becomes the sequence that we continue playing on, as in it is our 'new' $a_i$[/hide] Proposed by Shayan Gholami

2006 France Team Selection Test, 3

Let $a$, $b$ be positive integers such that $b^n+n$ is a multiple of $a^n+n$ for all positive integers $n$. Prove that $a=b$. [i]Proposed by Mohsen Jamali, Iran[/i]

1999 VJIMC, Problem 4

Show that the following implication holds for any two complex numbers $x$ and $y$: if $x+y$, $x^2+y^2$, $x^3+y^3$, $x^4+y^4\in\mathbb Z$, then $x^n+y^n\in\mathbb Z$ for all natural n.

2012 HMNT, 3

Find the largest integer less than $2012$ all of whose divisors have at most two $1$’s in their binary representations. In this section, the word [i]divisor [/i]is used to refer to a [i]positive divisor[/i] of an integer.

2005 Kyiv Mathematical Festival, 4

Prove that there exist infinitely many collections of positive integers $ (a,b,c,d,e,f)$ such that $ a < b < c$ and the equalities $ ab \minus{} c \equal{} de,$ $ bc \minus{} a \equal{} ef$ and $ ac \minus{} b \equal{} df$ hold.

2000 Hungary-Israel Binational, 1

Let $S$ be the set of all partitions of $2000$ (in a sum of positive integers). For every such partition $p$, we define $f (p)$ to be the sum of the number of summands in $p$ and the maximal summand in $p$. Compute the minimum of $f (p)$ when $p \in S .$

2015 Romania National Olympiad, 1

Show that among the square roots of the first $ 2015 $ natural numbers, we cannot choose an arithmetic sequence composed of $ 45 $ elements.

2021 Bulgaria National Olympiad, 4

Two infinite arithmetic sequences with positive integers are given:$$a_1<a_2<a_3<\cdots ; b_1<b_2<b_3<\cdots$$ It is known that there are infinitely many pairs of positive integers $(i,j)$ for which $i\leq j\leq i+2021$ and $a_i$ divides $b_j$. Prove that for every positive integer $i$ there exists a positive integer $j$ such that $a_i$ divides $b_j$.

2016 IFYM, Sozopol, 7

Let $S$ be a set of integers which has the following properties: 1) There exists $x,y\in S$ such that $(x,y)=(x-2,y-2)=1$; 2) For $\forall$ $x,y\in S, x^2-y\in S$. Prove that $S\equiv \mathbb{Z}$ .

2025 Bundeswettbewerb Mathematik, 1

Fridolin the frog jumps on the number line: He starts at $0$, then jumps in some order on each of the numbers $1,2,\dots,9$ exactly once and finally returns with his last jump to $0$. Can the total distance he travelled with these $10$ jumps be a) $20$, b) $25$?

2011 Indonesia TST, 4

Let $a, b$, and $c$ be positive integers such that $gcd(a, b) = 1$. Sequence $\{u_k\}$, is given such that $u_0 = 0$, $u_1 = 1$, and u$_{k+2} = au_{k+1} + bu_k$ for all $k \ge 0$. Let $m$ be the least positive integer such that $c | u_m$ and $n$ be an arbitrary positive integer such that $c | u_n$. Show that $m | n$. [hide=PS.] There was a typo in the last line, as it didn't define what n does. Wording comes from [b]tst-2011-1.pdf[/b] from [url=https://sites.google.com/site/imoidn/idntst/2011tst]here[/url]. Correction was made according to #2[/hide]

2006 All-Russian Olympiad, 2

Show that there exist four integers $a$, $b$, $c$, $d$ whose absolute values are all $>1000000$ and which satisfy $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}=\frac{1}{abcd}$.

2004 IberoAmerican, 3

Let $ n$ and $ k$ be positive integers such as either $ n$ is odd or both $ n$ and $ k$ are even. Prove that exists integers $ a$ and $ b$ such as $ GCD(a,n) \equal{} GCD(b,n) \equal{} 1$ and $ k \equal{} a \plus{} b$

2010 India IMO Training Camp, 12

Prove that there are infinitely many positive integers $m$ for which there exists consecutive odd positive integers $p_m<q_m$ such that $p_m^2+p_mq_m+q_m^2$ and $p_m^2+m\cdot p_mq_m+q_m^2$ are both perfect squares. If $m_1, m_2$ are two positive integers satisfying this condition, then we have $p_{m_1}\neq p_{m_2}$

2021 Science ON Seniors, 1

Find all sequences of positive integers $(a_n)_{n\ge 1}$ which satisfy $$a_{n+2}(a_{n+1}-1)=a_n(a_{n+1}+1)$$ for all $n\in \mathbb{Z}_{\ge 1}$. [i](Bogdan Blaga)[/i]

2002 BAMO, 4

For $n \ge 1$, let $a_n$ be the largest odd divisor of $n$, and let $b_n = a_1+a_2+...+a_n$. Prove that $b_n \ge \frac{ n^2 + 2}{3}$, and determine for which $n$ equality holds. For example, $a_1 = 1, a_2 = 1, a_3 = 3, a_4 = 1, a_5 = 5, a_6 = 3$, thus $b_6 = 1 + 1 + 3 + 1 + 5 + 3 = 14 \ge \frac{ 6^2 + 2}{3}= 12\frac23$ .

2011 Math Prize for Girls Olympiad, 3

Let $n$ be a positive integer such that $n + 1$ is divisible by 24. Prove that the sum of all the positive divisors of $n$ is divisible by 24.