This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2021 Princeton University Math Competition, A6 / B8

Let $f(n) = \sum^n_{i=1}\frac{gcd(i,n)}{n}$. Find the sum of all positive integers $ n$ for which $f(n) = 6$.

1966 Poland - Second Round, 1

Solve the equation in natural numbers $$ x+y+z+t=xyzt. $$

2011 Denmark MO - Mohr Contest, 1

Georg writes the numbers from $1$ to $15$ on different pieces of paper. He attempts to sort these pieces of paper into two stacks so that none of the stacks contains two numbers whose sum is a square number.Prove that this is impossible. (The square numbers are the numbers $0 = 0^2$, $1 = 1^2$, $4 = 2^2$, $9 = 3^2$ etc.)

2012 Tournament of Towns, 5

Let $p$ be a prime number. A set of $p + 2$ positive integers, not necessarily distinct, is called [i]interesting [/i] if the sum of any $p$ of them is divisible by each of the other two. Determine all interesting sets.

2019 APMO, 1

Let $\mathbb{Z}^+$ be the set of positive integers. Determine all functions $f : \mathbb{Z}^+\to\mathbb{Z}^+$ such that $a^2+f(a)f(b)$ is divisible by $f(a)+b$ for all positive integers $a,b$.

Maryland University HSMC part II, 2017

[b]p1[/b]. Consider the following four statements referring to themselves: 1. At least one of these statements is true. 2. At least two of these statements are false. 3. At least three of these statements are true. 4. All four of these statements are false. Determine which statements are true and which are false. Justify your answer. [b]p2.[/b] Let $f(x) = a_{2017}x^{2017} + a_{2016}x^{2016} + ... + a_1x + a_0$ where the coefficients $a_0, a_1, ... , a_{2017}$ have not yet been determined. Alice and Bob play the following game: $\bullet$ Alice and Bob alternate choosing nonzero integer values for the coefficients, with Alice going first. (For example, Alice’s first move could be to set $a_{18}$ to $-3$.) $\bullet$ After all of the coefficients have been chosen: - If f(x) has an integer root then Alice wins. - If f(x) does not have an integer root then Bob wins. Determine which player has a winning strategy and what the strategy is. Make sure to justify your answer. [b]p3.[/b] Suppose that a circle can be inscribed in a polygon $P$ with $2017$ equal sides. Prove that $P$ is a regular polygon; that is, all angles of $P$ are also equal. [b]p4.[/b] A $3 \times 3 \times 3$ cube of cheese is sliced into twenty-seven $ 1 \times 1 \times 1$ blocks. A mouse starts anywhere on the outside and eats one of the $1\times 1\times 1$ cubes. He then moves to an adjacent cube (in any direction), eats that cube, and continues until he has eaten all $27$ cubes. (Two cubes are considered adjacent if they share a face.) Prove that no matter what strategy the mouse uses, he cannot eat the middle cube last. [Note: One should neglect gravity – intermediate configurations don’t collapse.] p5. Suppose that a constant $c > 0$ and an infinite sequence of real numbers $x_0, x_1, x_2, ...$ satisfy $x_{k+1} =\frac{x_k + 1}{1 - cx_k}$ for all $k \ge 0$. Prove that the sequence $x_0, x_1, x_2, ....$ contains infinitely many positive terms and also contains infinitely many negative terms. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2012 EGMO, 5

The numbers $p$ and $q$ are prime and satisfy \[\frac{p}{{p + 1}} + \frac{{q + 1}}{q} = \frac{{2n}}{{n + 2}}\] for some positive integer $n$. Find all possible values of $q-p$. [i]Luxembourg (Pierre Haas)[/i]

1970 Canada National Olympiad, 7

Show that from any five integers, not necessarily distinct, one can always choose three of these integers whose sum is divisible by 3.

1962 All Russian Mathematical Olympiad, 021

Given $1962$ -digit number. It is divisible by $9$. Let $x$ be the sum of its digits. Let the sum of the digits of $x$ be $y$. Let the sum of the digits of $y$ be $z$. Find $z$.

2012 Mathcenter Contest + Longlist, 10

The table size $8 \times 8$ contains the numbers $1,2,...,8$ in each amount as much as you want provided that two numbers that are adjacent vertically, horizontally, diagonally are relative primes. Prove that some number appears in the table at least $12$ times. [i](PP-nine)[/i]

2021 South Africa National Olympiad, 3

Determine the smallest integer $k > 1$ such that there exist $k$ distinct primes whose squares sum to a power of $2$.

1978 AMC 12/AHSME, 27

There is more than one integer greater than $1$ which, when divided by any integer $k$ such that $2 \le k \le 11$, has a remainder of $1$. What is the difference between the two smallest such integers? $\textbf{(A) }2310\qquad\textbf{(B) }2311\qquad\textbf{(C) }27,720\qquad\textbf{(D) }27,721\qquad \textbf{(E) }\text{none of these}$

2004 India IMO Training Camp, 4

Let $f$ be a bijection of the set of all natural numbers on to itself. Prove that there exists positive integers $a < a+d < a+ 2d$ such that $f(a) < f(a+d) <f(a+2d)$

2019 Saudi Arabia JBMO TST, 3

Find all positive integers of form abcd such that $$\overline{abcd} = a^{a+b+c+d} - a^{-a+b-c+d} + a$$

2024 Princeton University Math Competition, A6 / B8

Let Pascal’s triangle be constructed where each $\tbinom{n}{i}$ is written inside its own cell in row $n.$ Colby colors the cells red for $1 \le n \le 63$ when $\tbinom{n}{i}$ is divisible by $4.$ How many cells does he color red?

2002 Tournament Of Towns, 5

An infinite sequence of natural number $\{x_n\}_{n\ge 1}$ is such that $x_{n+1}$ is obtained by adding one of the non-zero digits of $x_n$ to itself. Show this sequence contains an even number.

2019 Polish Junior MO Second Round, 5.

The integer $n \geq 1$ does not contain digits: $1,\; 2,\; 9\;$ in its decimal notation. Prove that one of the digits: $1,\; 2,\; 9$ appears at least once in the decimal notation of the number $3n$.

2003 Argentina National Olympiad, 2

On the blackboard are written the $2003$ integers from $1$ to $2003$. Lucas must delete $90$ numbers. Next, Mauro must choose $37$ from the numbers that remain written. If the $37$ numbers Mauro chooses form an arithmetic progression, Mauro wins. If not, Lucas wins. Decide if Lucas can choose the $90$ numbers he erases so that victory is assured.

2021 Girls in Mathematics Tournament, 3

A natural number is called [i]chaotigal [/i] if it and its successor both have the sum of their digits divisible by $2021$. How many digits are in the smallest chaotigal number?

2014 BMT Spring, 19

A number $k$ is [i]nice [/i] in base $b$ if there exists a $k$-digit number $n$ such that $n, 2n, . . . kn$ are each some cyclic shifts of the digits of $n$ in base $b$ (for example, $2$ is [i]nice [/i] in base $5$ because $2\cdot 135 = 315$). Determine all nice numbers in base $18$.

1989 Tournament Of Towns, (230) 4

Given the natural number N, consider triples of different positive integers $(a, b, c)$ such that $a + b + c = N$. Take the largest possible system of these triples such that no two triples of the system have any common elements. Denote the number of triples of this system by $K(N)$. Prove that: (a) $K(N) >\frac{N}{6}-1$ (b) $K(N) <\frac{2N}{9}$ (L.D. Kurliandchik, Leningrad)

1995 Austrian-Polish Competition, 7

Consider the equation $3y^4 + 4cy^3 + 2xy + 48 = 0$, where $c$ is an integer parameter. Determine all values of $c$ for which the number of integral solutions $(x,y)$ satisfying the conditions (i) and (ii) is maximal: (i) $|x|$ is a square of an integer; (ii) $y$ is a squarefree number.

2022 Taiwan TST Round 2, N

For any two coprime positive integers $p, q$, define $f(i)$ to be the remainder of $p\cdot i$ divided by $q$ for $i = 1, 2,\ldots,q -1$. The number $i$ is called a[b] large [/b]number (resp. [b]small[/b] number) when $f(i)$ is the maximum (resp. the minimum) among the numbers $f(1), f(2),\ldots,f(i)$. Note that $1$ is both large and small. Let $a, b$ be two fixed positive integers. Given that there are exactly $a$ large numbers and $b$ small numbers among $1, 2,\ldots , q - 1$, find the least possible number for $q$. [i] Proposed by usjl[/i]

2000 Harvard-MIT Mathematics Tournament, 8

A woman has $\$1.58$ in pennies, nickels, dimes, quarters, half-dollars and silver dollars. If she has a different number of coins of each denomination, how many coins does she have?

2013 Dutch IMO TST, 4

Determine all positive integers $n\ge 2$ satisfying $i+j\equiv\binom ni +\binom nj \pmod{2}$ for all $i$ and $j$ with $0\le i\le j\le n$.