This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2016 Romanian Master of Mathematics Shortlist, N1

Determine all integers $n \ge 3$ whose decimal expansion has less than $20$ digits, such that every quadratic non-residue modulo $n$ is a primitive root modulo $n$. [i]An integer $a$ is a quadratic non-residue modulo $n$, if there is no integer $b$ such that $a - b^2$ is divisible by $n$. An integer $a$ is a primitive root modulo $n$, if for every integer $b$ relatively prime to n there is a positive integer $k$ such that $a^k - b$ is divisible by $n$.[/i]

2005 Postal Coaching, 7

Fins all ordered triples $ \left(a,b,c\right)$ of positive integers such that $ abc \plus{} ab \plus{} c \equal{} a^3$.

1956 Moscow Mathematical Olympiad, 326

a) In the decimal expression of a positive number, $a$, all decimals beginning with the third after the decimal point, are deleted (i.e., we take an approximation of $a$ with accuracy to $0.01$ with deficiency). The number obtained is divided by $a$ and the quotient is similarly approximated with the same accuracy by a number $b$. What numbers $b$ can be thus obtained? Write all their possible values. b) same as (a) but with accuracy to $0.001$ c) same as (a) but with accuracy to $0.0001$

2020 Switzerland Team Selection Test, 2

Find all positive integers $n$ such that there exists an infinite set $A$ of positive integers with the following property: For all pairwise distinct numbers $a_1, a_2, \ldots , a_n \in A$, the numbers $$a_1 + a_2 + \ldots + a_n \text{ and } a_1\cdot a_2\cdot \ldots\cdot a_n$$ are coprime.

2009 Purple Comet Problems, 18

On triangle $ABC$ let $D$ be the point on $AB$ so that $CD$ is an altitude of the triangle, and $E$ be the point on $BC$ so that $AE$ bisects angle $BAC.$ Let $G$ be the intersection of $AE$ and $CD,$ and let point $F$ be the intersection of side $AC$ and the ray $BG.$ If $AB$ has length $28,$ $AC$ has length $14,$ and $CD$ has length $10,$ then the length of $CF$ can be written as $\tfrac{k-m\sqrt{p}}{n}$ where $k, m, n,$ and $p$ are positive integers, $k$ and $n$ are relatively prime, and $p$ is not divisible by the square of any prime. Find $k - m + n + p.$

2015 Mexico National Olympiad, 4

Let $n$ be a positive integer. Mary writes the $n^3$ triples of not necessarily distinct integers, each between $1$ and $n$ inclusive on a board. Afterwards, she finds the greatest (possibly more than one), and erases the rest. For example, in the triple $(1, 3, 4)$ she erases the numbers 1 and 3, and in the triple $(1, 2, 2)$ she erases only the number 1, Show after finishing this process, the amount of remaining numbers on the board cannot be a perfect square.

the 9th XMO, 3

A sequence $\{a_n\} $ satisfies $a_1$ is a positive integer and $a_{n+1}$ is the largest odd integer that divides $2^n-1+a_n$ for all $n\geqslant 1$. Given a positive integer $r$ which is greater than $1$. Is it possible that there exists infinitely many pairs of ordered positive integers $(m,n)$ for which $m>n$ and $a_m = ra_n$? In other words, if you successfully find [b]an[/b] $a_1$ that yields infinitely many pairs of $(m,n)$ which work fine, you win and the answer is YES. Otherwise you have to proof NO for every possible $a_1$. @below, XMO stands for Xueersi Mathematical Olympiad, where Xueersi (学而思) is a famous tutoring camp in China.

2007 Kazakhstan National Olympiad, 3

Solve in prime numbers the equation $p(p+1)+q(q+1)=r(r+1)$.

2009 Balkan MO Shortlist, N3

Determine all integers $1 \le m, 1 \le n \le 2009$, for which \begin{align*} \prod_{i=1}^n \left( i^3 +1 \right) = m^2 \end{align*}

1995 Tournament Of Towns, (445) 1

Prove that if $a$, $b$ and $c$ are integers and the sums $$\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \,\,\,\, and \,\,\,\, \frac{a}{c}+\frac{c}{b}+\frac{b}{a}$$ are also integers, then we have $|a| = |v| = |c|$. (A Gribalko)

2004 Brazil Team Selection Test, Problem 2

Show that there exist infinitely many pairs of positive integers $(m,n)$ such that $\binom m{n-1}=\binom{m-1}n$.

2020 Silk Road, 1

Given a strictly increasing infinite sequence of natural numbers $ a_1, $ $ a_2, $ $ a_3, $ $ \ldots $. It is known that $ a_n \leq n + 2020 $ and the number $ n ^ 3 a_n - 1 $ is divisible by $ a_ {n + 1} $ for all natural numbers $ n $. Prove that $ a_n = n $ for all natural numbers $ n $.

1996 Irish Math Olympiad, 2

Let $ S(n)$ denote the sum of the digits of a natural number $ n$ (in base $ 10$). Prove that for every $ n$, $ S(2n) \le 2S(n) \le 10S(2n)$. Prove also that there is a positive integer $ n$ with $ S(n)\equal{}1996S(3n)$.

1982 Putnam, B4

Let $n_1,n_2,\ldots,n_s$ be distinct integers such that $$(n_1+k)(n_2+k)\cdots(n_s+k)$$is an integral multiple of $n_1n_2\cdots n_s$ for every integer $k$. For each of the following assertions give a proof or a counterexample: $(\text a)$ $|n_i|=1$ for some $i$ $(\text b)$ If further all $n_i$ are positive, then $$\{n_1,n_2,\ldots,n_2\}=\{1,2,\ldots,s\}.$$

2002 Singapore Team Selection Test, 2

For each real number $x$, $\lfloor x \rfloor$ is the greatest integer less than or equal to $x$. For example $\lfloor 2.8 \rfloor = 2$. Let $r \ge 0$ be a real number such that for all integers $m, n, m|n$ implies $\lfloor mr \rfloor| \lfloor nr \rfloor$. Prove that $r$ is an integer.

1994 Baltic Way, 7

Let $p>2$ be a prime number and \[1+\frac{1}{2^3}+\frac{1}{3^3}+\ldots +\frac{1}{(p-1)^3}=\frac{m}{n}\] where $m$ and $n$ are relatively prime. Show that $m$ is a multiple of $p$.

2016 Estonia Team Selection Test, 11

Find all positive integers $n$ such that $(n^2 + 11n - 4) \cdot n! + 33 \cdot 13^n + 4$ is a perfect square

2016 Peru Cono Sur TST, P1

How many multiples of $11$ of four digits, of the form $\overline{abcd}$, satisfy that $a\neq b, b\neq c$ and $c\neq a$?

2013 Iran MO (2nd Round), 1

Find all pairs $(a,b)$ of positive integers for which $\gcd(a,b)=1$, and $\frac{a}{b}=\overline{b.a}$. (For example, if $a=92$ and $b=13$, then $b/a=13.92$ )

2000 Hungary-Israel Binational, 2

For a given integer $d$, let us define $S = \{m^{2}+dn^{2}| m, n \in\mathbb{Z}\}$. Suppose that $p, q$ are two elements of $S$ , where $p$ is prime and $p | q$. Prove that $r = q/p$ also belongs to $S$ .

2019 CHMMC (Fall), Individual

[b]p1.[/b] Consider a cube with side length $2$. Take any one of its vertices and consider the three midpoints of the three edges emanating from that vertex. What is the distance from that vertex to the plane formed by those three midpoints? [b]p2.[/b] Digits $H$, $M$, and $C$ satisfy the following relations where $\overline{ABC}$ denotes the number whose digits in base $10$ are $A$, $B$, and $C$. $$\overline{H}\times \overline{H} = \overline{M}\times \overline{C} + 1$$ $$\overline{HH}\times \overline{H} = \overline{MC}\times \overline{C} + 1$$ $$\overline{HHH}\times \overline{H} = \overline{MCC}\times \overline{C} + 1$$ Find $\overline{HMC}$. [b]p3.[/b] Two players play the following game on a table with fair two-sided coins. The first player starts with one, two, or three coins on the table, each with equal probability. On each turn, the player flips all the coins on the table and counts how many coins land heads up. If this number is odd, a coin is removed from the table. If this number is even, a coin is added to the table. A player wins when he/she removes the last coin on the table. Suppose the game ends. What is the probability that the first player wins? [b]p4.[/b] Cyclic quadrilateral $[BLUE]$ has right $\angle E$. Let $R$ be a point not in $[BLUE]$. If $[BLUR] =[BLUE]$, $\angle ELB = 45^o$, and $\overline{EU} = \overline{UR}$, find $\angle RUE$. [b]p5.[/b] There are two tracks in the $x, y$ plane, defined by the equations $$y =\sqrt{3 - x^2}\,\,\, \text{and} \,\,\,y =\sqrt{4- x^2}$$ A baton of length $1$ has one end attached to each track and is allowed to move freely, but no end may be picked up or go past the end of either track. What is the maximum area the baton can sweep out? [b]p6.[/b] For integers $1 \le a \le 2$, $1 \le b \le 10$,$ 1 \le c \le 12$, $1 \le d \le 18$, let $f(a, b, c, d)$ be the unique integer between $0$ and $8150$ inclusive that leaves a remainder of a when divided by $3$, a remainder of $b$ when divided by $11$, a remainder of $c$ when divided by $13$, and a remainder of $d$ when divided by $19$. Compute $$\sum_{a+b+c+d=23}f(a, b, c, d).$$ [b]p7.[/b] Compute $\cos ( \theta)$ if $$\sum^{\infty}_{n=0} \frac{ \cos (n\theta)}{3^n} = 1.$$ [b]p8.[/b] How many solutions does this equation $$\left(\frac{a+b}{2}\right)^2=\left(\frac{b+c}{2019}\right)^2$$ have in positive integers $a, b, c$ that are all less than $2019^2$? [b]p9.[/b] Consider a square grid with vertices labeled $1, 2, 3, 4$ clockwise in that order. Fred the frog is jumping between vertices, with the following rules: he starts at the vertex label $1$, and at any given vertex he jumps to the vertex diagonally across from him with probability $\frac12$ and the vertices adjacent to him each with probability $\frac14$ . After $2019$ jumps, suppose the probability that the sum of the labels on the last two vertices he has visited is $3$ can be written as $2^{-m} -2^{-n}$ for positive integers $m,n$. Find $m + n$. [b]p10.[/b] The base ten numeral system uses digits $0-9$ and each place value corresponds to a power of $10$. For example, $$2019 = 2 \cdot 10^3 + 0 \cdot 10^2 + 1 \cdot 10^1 + 9 \cdot 10^0.$$ Let $\phi =\frac{1 +\sqrt5}{2}$. We can define a similar numeral system, base , where we only use digits $0$ and $1$, and each place value corresponds to a power of . For example, $$11.01 = 1 \cdot \phi^1 + 1 \cdot \phi^0 + 0 \cdot \phi^{-1} + 1 \cdot \phi^{-2}$$ Note that base  representations are not unique, because, for example, $100_{\phi} = 11_{\phi}$. Compute the base $\phi$ representation of $7$ with the fewest number of $1$s. [b]p11.[/b] Let $ABC$ be a triangle with $\angle BAC = 60^o$ and with circumradius $1$. Let $G$ be its centroid and $D$ be the foot of the perpendicular from $A$ to $BC$. Suppose $AG =\frac{\sqrt6}{3}$ . Find $AD$. [b]p12.[/b] Let $f(a, b)$ be a function with the following properties for all positive integers $a \ne b$: $$f(1, 2) = f(2, 1)$$ $$f(a, b) + f(b, a) = 0$$ $$f(a + b, b) = f(b, a) + b$$ Compute: $$\sum^{2019}_{i=1} f(4^i - 1, 2^i) + f(4^i + 1, 2^i)$$ [b]p13.[/b] You and your friends have been tasked with building a cardboard castle in the two-dimensional Cartesian plane. The castle is built by the following rules: 1. There is a tower of height $2^n$ at the origin. 2. From towers of height $2^i \ge 2$, a wall of length $2^{i-1}$ can be constructed between the aforementioned tower and a new tower of height $2^{i-1}$. Walls must be parallel to a coordinate axis, and each tower must be connected to at least one other tower by a wall. If one unit of tower height costs $\$9$ and one unit of wall length costs $\$3$ and $n = 1000$, how many distinct costs are there of castles that satisfy the above constraints? Two castles are distinct if there exists a tower or wall that is in one castle but not in the other. [b]p14.[/b] For $n$ digits, $(a_1, a_2, ..., a_n)$ with $0 \le a_i < n$ for $i = 1, 2,..., n$ and $a_1 \ne 0$ define $(\overline{a_1a_2 ... a_n})_n$ to be the number with digits $a_1$, $a_2$, $...$, $a_n$ written in base $n$. Let $S_n = \{(a_1, a_2, a_3,..., a_n)| \,\,\, (n + 1)| (\overline{a_1a_2 ... a_n})_n, a_1 \ge 1\}$ be the set of $n$-tuples such that $(\overline{a_1a_2 ... a_n})_n$ is divisible by $n + 1$. Find all $n > 1$ such that $n$ divides $|S_n| + 2019$. [b]p15.[/b] Let $P$ be the set of polynomials with degree $2019$ with leading coefficient $1$ and non-leading coefficients from the set $C = \{-1, 0, 1\}$. For example, the function $f = x^{2019} - x^{42} + 1$ is in $P$, but the functions $f = x^{2020}$, $f = -x^{2019}$, and $f = x^{2019} + 2x^{21}$ are not in $P$. Define a [i]swap [/i]on a polynomial $f$ to be changing a term $ax^n$ to $bx^n$ where $b \in C$ and there are no terms with degree smaller than $n$ with coefficients equal to $a$ or $b$. For example, a swap from $x^{2019} + x^{17} - x^{15} + x^{10}$ to $x^{2019} + x^{17} - x^{15} - x^{10}$ would be valid, but the following swaps would not be valid: $$x^{2019} + x^3 \,\,\, \text{to} \,\,\, x^{2019}$$ $$x^{2019} + x^3 \,\,\, \text{to} \,\,\, x^{2019} + x^3 + x^2$$ $$x^{2019} + x^2 + x + 1 \,\,\, \text{to} \,\,\, x^{2019} - x^2 - x - 1$$ Let $B$ be the set of polynomials in $P$ where all non-leading terms have the same coefficient. There are $p$ polynomials that can be reached from each element of $B$ in exactly $s$ swaps, and there exist $0$ polynomials that can be reached from each element of $B$ in less than $s$ swaps. Compute $p \cdot s$, expressing your answer as a prime factorization. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2019 Junior Balkan Team Selection Tests - Moldova, 9

Find all positive real numbers $x$, that verify $x+\left[\frac{x}{3}\right]=\left[\frac{2x}{3}\right]+\left[\frac{3x}{5}\right]$.

2000 Kazakhstan National Olympiad, 4

Find all triples of natural numbers $ (x, y, z) $ that satisfy the condition $ (x + 1) ^ {y + 1} + 1 = (x + 2) ^ {z + 1}. $

2007 Estonia Math Open Senior Contests, 3

Let $ b$ be an even positive integer for which there exists a natural number n such that $ n>1$ and $ \frac{b^n\minus{}1}{b\minus{}1}$ is a perfect square. Prove that $ b$ is divisible by 8.

2009 JBMO Shortlist, 1

Solve in non-negative integers the equation $ 2^{a}3^{b} \plus{} 9 \equal{} c^{2}$