This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

Mid-Michigan MO, Grades 10-12, 2003

[b]p1.[/b] The length of the first side of a triangle is $1$, the length of the second side is $11$, and the length of the third side is an integer. Find that integer. [b]p2.[/b] Suppose $a, b$, and $c$ are positive numbers such that $a + b + c = 1$. Prove that $ab + ac + bc \le \frac13$. [b]p3.[/b] Prove that $1 +\frac12+\frac13+\frac14+ ... +\frac{1}{100}$ is not an integer. [b]p4.[/b] Find all of the four-digit numbers n such that the last four digits of $n^2$ coincide with the digits of $n$. [b]p5.[/b] (Bonus) Several ants are crawling along a circle with equal constant velocities (not necessarily in the same direction). If two ants collide, both immediately reverse direction and crawl with the same velocity. Prove that, no matter how many ants and what their initial positions are, they will, at some time, all simultaneously return to the initial positions. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1971 Polish MO Finals, 1

Show that if $(a_n)$ is an infinite sequence of distinct positive integers, neither of which contains digit $0$ in the decimal expansion, then $$\sum_{n=1}^{\infty} \frac{1}{a_n}< 29.$$

2012 HMNT, 1

Find the number of integers between $1$ and $200$ inclusive whose distinct prime divisors sum to $16$. (For example, the sum of the distinct prime divisors of $12$ is $2 + 3 = 5$.) In this section, the word [i]divisor [/i]is used to refer to a [i]positive divisor[/i] of an integer.

2004 Estonia National Olympiad, 1

Tags: number theory , gcd , lcm
Find all triples of positive integers $(x, y, z)$ satisfying $x < y < z$, $gcd(x, y) = 6, gcd(y, z) = 10, gcd(z, x) = 8$ and $lcm(x, y,z) = 2400$.

1991 Balkan MO, 2

Show that there are infinitely many noncongruent triangles which satisfy the following conditions: i) the side lengths are relatively prime integers; ii)the area is an integer number; iii)the altitudes' lengths are not integer numbers.

1995 Bulgaria National Olympiad, 6

Suppose that $x$ and $y$ are different real numbers such that $\frac{x^n-y^n}{x-y}$ is an integer for some four consecutive positive integers $n$. Prove that $\frac{x^n-y^n}{x-y}$ is an integer for all positive integers n.

2012 Junior Balkan Team Selection Tests - Moldova, 1

Find a sequence of $ 2012 $ distinct integers bigger than $ 0 $ such that their sum is a perfect square and their product is a perfect cube.

2010 Hanoi Open Mathematics Competitions, 6

Let $a,b$ be the roots of the equation $x^2-px+q = 0$ and let $c, d$ be the roots of the equation $x^2 - rx + s = 0$, where $p, q, r,s$ are some positive real numbers. Suppose that $M =\frac{2(abc + bcd + cda + dab)}{p^2 + q^2 + r^2 + s^2}$ is an integer. Determine $a, b, c, d$.

2010 Purple Comet Problems, 11

A jar contains one white marble, two blue marbles, three red marbles, and four green marbles. If you select two of these marbles without replacement, the probability that both marbles will be the same color is $\tfrac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n.$

2024 Bulgarian Winter Tournament, 10.2

Find all positive integers $k$ for which there exist positive integers $x, y$, such that $\frac{x^ky}{x^2+y^2}$ is a prime.