Found problems: 15460
2004 Switzerland - Final Round, 8
A list of natural numbers is written on a blackboard. The following operation is performed and repeated: choose any two numbers $a, b$, wipe them out and instead write gcd$(a, b)$ and lcm$(a, b)$. Show that the content of the list no longer changed after a certain point in time.
2023 Math Hour Olympiad, 8-10
[u]Round 1[/u]
[b]p1.[/b] Alex is on a week-long mining quest. Each morning, she mines at least $1$ and at most $10$ diamonds and adds them to her treasure chest (which already contains some diamonds). Every night she counts the total number of diamonds in her collection and finds that it is divisible by either $22$ or $25$. Show that she miscounted.
[b]p2.[/b] Hermione set out a row of $11$ Bertie Bott’s Every Flavor Beans for Ron to try. There are $5$ chocolateflavored beans that Ron likes and $6$ beans flavored like earwax, which he finds disgusting. All beans look the same, and Hermione tells Ron that a chocolate bean always has another chocolate bean next to it. What is the smallest number of beans that Ron must taste to guarantee he finds a chocolate one?
[b]p3.[/b] There are $101$ pirates on a pirate ship: the captain and $100$ crew. Each pirate, including the captain, starts with $1$ gold coin. The captain makes proposals for redistributing the coins, and the crew vote on these proposals. The captain does not vote. For every proposal, each crew member greedily votes “yes” if he gains coins as a result of the proposal, “no” if he loses coins, and passes otherwise. If strictly more crew members vote “yes” than “no,” the proposal takes effect. The captain can make any number of proposals, one after the other. What is the largest number of coins the captain can accumulate?
[b]p4.[/b] There are $100$ food trucks in a circle and $10$ gnomes who sample their menus. For the first course, all the gnomes eat at different trucks. For each
course after the first,
gnome #$1$ moves $1$ truck left or right and eats there;
gnome #$2$ moves $2$ trucks left or right and eats there;
...
gnome #$10$ moves $10$ trucks left or right and eats there.
All gnomes move at the same time. After some number of courses, each food truck had served at least one gnome. Show that at least one gnome ate at some food truck twice.
[b]p5.[/b] The town of Lumenville has $100$ houses and is preparing for the math festival. The Tesla wiring company lays lengths of power wire in straight lines between the houses so that power flows between any two houses, possibly by passing through other houses.The Edison lighting company hangs strings of lights in straight lines between pairs of houses so that each house is connected by a string to exactly one other. Show that however the houses are arranged, the Edison company can always hang their strings of lights so that the total length of the strings is no more than the total length of the power wires the Tesla company used.
[img]https://cdn.artofproblemsolving.com/attachments/9/2/763de9f4138b4dc552247e9316175036c649b6.png[/img]
[u]Round 2[/u]
[b]p6.[/b] What is the largest number of zeros that could appear at the end of $1^n + 2^n + 3^n + 4^n$, where n can be any positive integer?
[b]p7.[/b] A tennis academy has $2023$ members. For every group of 1011 people, there is a person outside of the group who played a match against everyone in it. Show there is someone who has played against all $2022$ other members.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2019 Saudi Arabia JBMO TST, 4
A positive integer $n$ is called $nice$, if the sum of the squares of all its positive divisors is equal to $(n+3)^2$. Prove that if $n=pq$ is nice, where $p, q$ are not necessarily distinct primes, then $n+2$ and $2(n+1)$ are simultaneously perfect squares.
1985 IMO Longlists, 4
Let $x, y$, and $z$ be real numbers satisfying $x + y + z = xyz.$ Prove that
\[x(1 - y^2)(1 - z^2) + y(1 -z^2)(1 - x^2) + z(1 - x^2)(1 - y^2) = 4xyz.\]
2016 PAMO, 3
For any positive integer $n$, we define the integer $P(n)$ by :
$P(n)=n(n+1)(2n+1)(3n+1)...(16n+1)$.
Find the greatest common divisor of the integers $P(1)$, $P(2)$, $P(3),...,P(2016)$.
2024 India Regional Mathematical Olympiad, 1
Find all positive integers $x,y$ such that $202x + 4x^2 = y^2$.
2021 Thailand Online MO, P2
Determine all integers $n>1$ that satisfy the following condition: for any positive integer $x$, if gcd$(x,n)=1$, then gcd$(x+101,n)=1$.
2019 Purple Comet Problems, 8
In the subtraction PURPLE $-$ COMET $=$ MEET each distinct letter represents a distinct decimal digit, and no leading digit is $0$. Find the greatest possible number represented by PURPLE.
2018 Romanian Master of Mathematics, 4
Let $a,b,c,d$ be positive integers such that $ad \neq bc$ and $gcd(a,b,c,d)=1$. Let $S$ be the set of values attained by $\gcd(an+b,cn+d)$ as $n$ runs through the positive integers. Show that $S$ is the set of all positive divisors of some positive integer.
2018 Thailand TST, 2
Find all pairs $(p,q)$ of prime numbers which $p>q$ and
$$\frac{(p+q)^{p+q}(p-q)^{p-q}-1}{(p+q)^{p-q}(p-q)^{p+q}-1}$$
is an integer.
2020 May Olympiad, 5
We say that a positive integer $n$ is circular if it is possible to place the numbers $1, 2, \cdots , n$ in a
circumference so that there are no three adjacent numbers whose sum is a multiple of 3.
a) Show that 9 is not circular
b) Show that any integer greater than 9 is circular.
2020 Princeton University Math Competition, A5/B7
We say that a positive integer $n$ is [i]divable [/i] if there exist positive integers $1 < a < b < n$ such that, if the base-$a$ representation of $n$ is $\sum_{i=0}^{k_1} a_ia^i$ , and the base-$b$ representation of $n$ is $\sum_{i=0}^{k_2} b_ib^i$ , then for all positive integers $c > b$, we have that $\sum_{i=0}^{k_2} b_ic^i$ divides $\sum_{i=0}^{k_1} a_ic^i$. Find the number of non-divable $n$ such that $1 \le n \le 100$.
2015 Portugal MO, 3
The numbers from $1$ to $2015$ are written on sheets so that if if $n-m$ is a prime, then $n$ and $m$ are on different sheets. What is the minimum number of sheets required?
2024 CMIMC Algebra and Number Theory, 8
Compute the number of non-negative integers $k < 2^{20}$ such that $\binom{5k}{k}$ is odd.
[i]Proposed by David Tang[/i]
2015 BMT Spring, 2
Compute the sum of the digits of $1001^{10}$
2020 Princeton University Math Competition, A4/B6
Given two positive integers $a \ne b$, let $f(a, b)$ be the smallest integer that divides exactly one of $a, b$, but not both. Determine the number of pairs of positive integers $(x, y)$, where $x \ne y$, $1\le x, y, \le 100$ and $\gcd(f(x, y), \gcd(x, y)) = 2$.
2020 ABMC, Team
[u]Round 5[/u]
[b]5.1.[/b] Quadrilateral $ABCD$ is such that $\angle ABC = \angle ADC = 90^o$ , $\angle BAD = 150^o$ , $AD = 3$, and $AB = \sqrt3$. The area of $ABCD$ can be expressed as $p\sqrt{q}$ for positive integers $p, q$ where $q$ is not divisible by the square of any prime. Find $p + q$.
[b]5.2.[/b] Neetin wants to gamble, so his friend Akshay describes a game to him. The game will consist of three dice: a $100$-sided one with the numbers $1$ to $100$, a tetrahedral one with the numbers $1$ to $4$, and a normal $6$-sided die. If Neetin rolls numbers with a product that is divisible by $21$, he wins. Otherwise, he pays Akshay $100$ dollars. The number of dollars that Akshay must pay Neetin for a win in order to make this game fair is $a/b$ for relatively prime positive integers $a, b$. Find $a + b$. (Fair means the expected net gain is $0$. )
[b]5.3.[/b] What is the sum of the fourth powers of the roots of the polynomial $P(x) = x^2 + 2x + 3$?
[u]Round 6[/u]
[b]6.1.[/b] Consider the set $S = \{1, 2, 3, 4,..., 25\}$. How many ordered $n$-tuples $S_1 = (a_1, a_2, a_3,..., a_n)$ of pairwise distinct ai exist such that $a_i \in S$ and $i^2 | a_i$ for all $1 \le i \le n$?
[b]6.2.[/b] How many ways are there to place $2$ identical rooks and $ 1$ queen on a $ 4 \times 4$ chessboard such that no piece attacks another piece? (A queen can move diagonally, vertically or horizontally and a rook can move vertically or horizontally)
[b]6.3.[/b] Let $L$ be an ordered list $\ell_1$, $\ell_2$, $...$, $\ell_{36}$ of consecutive positive integers who all have the sum of their digits not divisible by $11$. It is given that $\ell_1$ is the least element of $L$. Find the least possible value of $\ell_1$.
[u]Round 7[/u]
[b]7.1.[/b] Spencer, Candice, and Heather love to play cards, but they especially love the highest cards in the deck - the face cards (jacks, queens, and kings). They also each have a unique favorite suit: Spencer’s favorite suit is spades, Candice’s favorite suit is clubs, and Heather’s favorite suit is hearts. A dealer pulls out the $9$ face cards from every suit except the diamonds and wants to deal them out to the $3$ friends. How many ways can he do this so that none of the $3$ friends will see a single card that is part of their favorite suit?
[b]7.2.[/b] Suppose a sequence of integers satisfies the recurrence $a_{n+3} = 7a_{n+2} - 14a_{n+1} + 8a_n$. If $a_0 = 4$, $a_1 = 9$, and $a_2 = 25$, find $a_{16}$. Your answer will be in the form $2^a + 2^b + c$, where $2^a < a_{16} < 2^{a+1}$ and $b$ is as large as possible. Find $a + b + c$.
[b]7.3.[/b] Parallel lines $\ell_1$ and $\ell_2$ are $1$ unit apart. Unit square $WXYZ$ lies in the same plane with vertex $W$ on $\ell_1$. Line $\ell_2$ intersects segments $YX$ and $YZ$ at points $U$ and $O$, respectively. Given $UO =\frac{9}{10}$, the inradius of $\vartriangle YOU$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m, n$. Find $m + n$.
[u]Round 8[/u]
[b]8.[/b] Let $A$ be the number of contestants who participated in at least one of the three rounds of the 2020 ABMC April contest. Let $B$ be the number of times the letter b appears in the Accuracy Round. Let $M$ be the number of
people who submitted both the speed and accuracy rounds before 2:00 PM EST. Further, let $C$ be the number of
times the letter c appears in the Speed Round. Estimate
$$A \cdot B + M \cdot C.$$Your answer will be scored according to the following formula, where $X$ is the correct answer and $I$ is your input.
$$max \left\{ 0, \left\lceil min \left\{13 - \frac{|I-X|}{0.05 |I|}, 13 - \frac{|I-X|}{0.05 |I-2X|} \right\} \right\rceil \right\}$$
PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h2766239p24226402]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2024 CMIMC Algebra and Number Theory, 1
Connor is thinking of a two-digit number $n$, which satisfies the following properties:
[list]
[*] If $n>70$, then $n$ is a perfect square.
[*] If $n>40$, then $n$ is prime.
[*] If $n<80$, then the sum of the digits of $n$ is $14$.
[/list]
What is Connor's number?
[i]Proposed by Connor Gordon[/i]
1990 Romania Team Selection Test, 10
Let $p,q$ be positive prime numbers and suppose $q>5$. Prove that if $q \mid 2^{p}+3^{p}$, then $q>p$.
[i]Laurentiu Panaitopol[/i]
1985 Brazil National Olympiad, 4
$a, b, c, d$ are integers. Show that $x^2 + ax + b = y^2 + cy + d$ has infinitely many integer solutions iff $a^2 - 4b = c^2 - 4d$.
2015 Caucasus Mathematical Olympiad, 2
There are $9$ cards with the numbers $1, 2, 3, 4, 5, 6, 7, 8$ and $9$. What is the largest number of these cards can be decomposed in a certain order in a row, so that in any two adjacent cards, one of the numbers is divided by the other?
2007 Nicolae Coculescu, 4
Prove that $ p $ divides $ \varphi (1+a^p) , $ where $ a\ge 2 $ is a natural number, $ p $ is a prime, and $ \varphi $ is Euler's totient.
[i]Cristinel Mortici[/i]
2007 Germany Team Selection Test, 3
Let $ a > b > 1$ be relatively prime positive integers. Define the weight of an integer $ c$, denoted by $ w(c)$ to be the minimal possible value of $ |x| \plus{} |y|$ taken over all pairs of integers $ x$ and $ y$ such that \[ax \plus{} by \equal{} c.\] An integer $ c$ is called a [i]local champion [/i]if $ w(c) \geq w(c \pm a)$ and $ w(c) \geq w(c \pm b)$.
Find all local champions and determine their number.
[i]Proposed by Zoran Sunic, USA[/i]
2012 Mathcenter Contest + Longlist, 4 sl12
Given a natural $n>2$, let $\{ a_1,a_2,...,a_{\phi (n)} \} \subset \mathbb{Z}$ is the Reduced Residue System (RRS) set of modulo $n$ (also known as the set of integers $k$ where $(k,n)=1$ and no pairs are congruent in modulo $n$ ).
if write $$\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_{\phi (n)}}=\frac{a}{b}$$
where $a,b \in \mathbb{N}$ and $(a,b)=1$ , then prove that $n|a$.
[i](PP-nine)[/i]
2013 Balkan MO Shortlist, N5
Prove that there do not exist distinct prime numbers $p$ and $q$ and a positive integer $n$ satisfying the equation $p^{q-1}- q^{p-1}=4n^2$