This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2023 Romanian Master of Mathematics Shortlist, C1

Determine all integers $n \geq 3$ for which there exists a con guration of $n$ points in the plane, no three collinear, that can be labelled $1$ through $n$ in two different ways, so that the following condition be satis fied: For every triple $(i,j,k), 1 \leq i < j < k \leq n$, the triangle $ijk$ in one labelling has the same orientation as the triangle labelled $ijk$ in the other, except for $(i,j,k) = (1,2,3)$.