This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2011 USA TSTST, 4

Acute triangle $ABC$ is inscribed in circle $\omega$. Let $H$ and $O$ denote its orthocenter and circumcenter, respectively. Let $M$ and $N$ be the midpoints of sides $AB$ and $AC$, respectively. Rays $MH$ and $NH$ meet $\omega$ at $P$ and $Q$, respectively. Lines $MN$ and $PQ$ meet at $R$. Prove that $OA\perp RA$.