This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 5

2019 India Regional Mathematical Olympiad, 2

Tags: p2 , geometry
Let $ABC$ be a triangle with circumcircle $\Omega$ and let $G$ be the centroid of triangle $ABC$. Extend $AG, BG$ and $CG$ to meet the circle $\Omega$ again in $A_1, B_1$ and $C_1$. Suppose $\angle BAC = \angle A_1 B_1 C_1, \angle ABC = \angle A_1 C_1 B_1$ and $ \angle ACB = B_1 A_1 C_1$. Prove that $ABC$ and $A_1 B_1 C_1$ are equilateral triangles.

2010 Contests, 2

Tags: inversion , p2 , geometry
Given a triangle $ABC$, with $I$ as its incenter and $\Gamma$ as its circumcircle, $AI$ intersects $\Gamma$ again at $D$. Let $E$ be a point on the arc $BDC$, and $F$ a point on the segment $BC$, such that $\angle BAF=\angle CAE < \dfrac12\angle BAC$. If $G$ is the midpoint of $IF$, prove that the meeting point of the lines $EI$ and $DG$ lies on $\Gamma$. [i]Proposed by Tai Wai Ming and Wang Chongli, Hong Kong[/i]

2010 IMO, 2

Tags: inversion , p2 , geometry
Given a triangle $ABC$, with $I$ as its incenter and $\Gamma$ as its circumcircle, $AI$ intersects $\Gamma$ again at $D$. Let $E$ be a point on the arc $BDC$, and $F$ a point on the segment $BC$, such that $\angle BAF=\angle CAE < \dfrac12\angle BAC$. If $G$ is the midpoint of $IF$, prove that the meeting point of the lines $EI$ and $DG$ lies on $\Gamma$. [i]Proposed by Tai Wai Ming and Wang Chongli, Hong Kong[/i]

2010 IMO Shortlist, 4

Tags: geometry , inversion , p2
Given a triangle $ABC$, with $I$ as its incenter and $\Gamma$ as its circumcircle, $AI$ intersects $\Gamma$ again at $D$. Let $E$ be a point on the arc $BDC$, and $F$ a point on the segment $BC$, such that $\angle BAF=\angle CAE < \dfrac12\angle BAC$. If $G$ is the midpoint of $IF$, prove that the meeting point of the lines $EI$ and $DG$ lies on $\Gamma$. [i]Proposed by Tai Wai Ming and Wang Chongli, Hong Kong[/i]

2020 DMO Stage 1, 2.

[b]Q[/b] On a \(10 \times 10\) chess board whose colors of square are green and blue in an arbitrary way and we are simultaneously allowed to switch all the colors of all squares in any \((2 \times 2)\) and \((5\times 5)\) region. Can we transform any coloring of the board into one where all squares are blue ? Give a proper explanation of your answer. Note. that if a unit square is part of both the $2\times 2$ and $5\times 5$ region,then its color switched is twice(i.e switching is additive) [i]Proposed by Aritra12[/i]