This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 253

1962 AMC 12/AHSME, 15

Given triangle $ ABC$ with base $ AB$ fixed in length and position. As the vertex $ C$ moves on a straight line, the intersection point of the three medians moves on: $ \textbf{(A)}\ \text{a circle} \qquad \textbf{(B)}\ \text{a parabola} \qquad \textbf{(C)}\ \text{an ellipse} \qquad \textbf{(D)}\ \text{a straight line} \qquad \textbf{(E)}\ \text{a curve here not listed}$

1982 All Soviet Union Mathematical Olympiad, 339

There is a parabola $y = x^2$ drawn on the coordinate plane. The axes are deleted. Can you restore them with the help of compass and ruler?

2010 USAJMO, 4

A triangle is called a parabolic triangle if its vertices lie on a parabola $y = x^2$. Prove that for every nonnegative integer $n$, there is an odd number $m$ and a parabolic triangle with vertices at three distinct points with integer coordinates with area $(2^nm)^2$.