This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

1967 Putnam, B6

Let $f$ be a real-valued function having partial derivatives and which is defined for $x^2 +y^2 \leq1$ and is such that $|f(x,y)|\leq 1.$ Show that there exists a point $(x_0, y_0 )$ in the interior of the unit circle such that $$\left( \frac{ \partial f}{\partial x}(x_0 ,y_0 ) \right)^{2}+ \left( \frac{ \partial f}{\partial y}(x_0 ,y_0 ) \right)^{2} \leq 16.$$