This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

1987 Traian Lălescu, 2.2

Let $ f:\mathbb{R}\longrightarrow\mathbb{R} ,f(x)=\left\{\begin{matrix} \sin x , & x\not\in\mathbb{Q} \\ 0, & x\in\mathbb{Q}\end{matrix}\right. . $ [b]a)[/b] Determine the maximum length of an interval $ I\subset\mathbb{R} $ such that $ f|_I $ is discontinuous everywhere, yet has the intermediate value property. [b]b)[/b] Study the convergence of the sequence $ \left( x_n\right)_{n\in\mathbb{N}\cup\{ 0\}} $ defined by $ x_0\in (0,\pi /2),x_{n+1}=f\left( x_n\right),\forall n\ge 0. $

2007 Nicolae Păun, 4

Construct a function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ having the following properties: $ \text{(i)} f $ is not monotonic on any real interval. $ \text{(ii)} f $ has Darboux property (intermediate value property) on any real interval. $ \text{(iii)} f(x)\leqslant f\left( x+1/n \right) ,\quad \forall x\in\mathbb{R} ,\quad \forall n\in\mathbb{N} $ [i]Alexandru Cioba[/i]