This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 521

2017 Switzerland - Final Round, 7

Let $n$ be a natural number such that there are exactly$ 2017$ distinct pairs of natural numbers $(a, b)$, which the equation $$\frac{1}{a}+\frac{1}{b}=\frac{1}{n}$$ fulfilld. Show that $n$ is a perfect square . Remark: $(7, 4) \ne (4, 7)$

1991 Bundeswettbewerb Mathematik, 1

Determine all solutions of the equation $4^x + 4^y + 4^z = u^2$ for integers $x,y,z$ and $u$.

2022 Czech and Slovak Olympiad III A, 5

Find all integers $n$ such that $2^n + n^2$ is a square of an integer. [i](Tomas Jurik )[/i]

2007 Thailand Mathematical Olympiad, 17

Compute the product of positive integers $n$ such that $n^2 + 59n + 881$ is a perfect square.

2019 Swedish Mathematical Competition, 6

Is there an infinite sequence of positive integers $\{a_n\}_{n = 1}^{\infty}$ which contains each positive integer exactly once and is such that the number $a_n + a_{n + 1} $ is a perfect square for each $n$?

1962 Czech and Slovak Olympiad III A, 1

Determine all integers $x$ such that $2x^2-x-36$ is a perfect square of a prime.

1988 Bundeswettbewerb Mathematik, 1

For the natural numbers $x$ and $y$, $2x^2 + x = 3y^2 + y$ . Prove that then $x-y$, $2x + 2y + 1$ and $3x + 3y + 1$ are perfect squares.

1974 Putnam, A3

A well-known theorem asserts that a prime $p > 2$ can be written as the sum of two perfect squares ($p = m^2 +n^2$ , with $m$ and $n$ integers) if and only if $p \equiv 1$ (mod $4$). Assuming this result, find which primes $p > 2$ can be written in each of the following forms, using integers $x$ and $y$: a) $x^2 +16y^2, $ b) $4x^2 +4xy+ 5y^2.$

2010 Chile National Olympiad, 1

The integers $a, b$ satisfy the following identity $$2a^2 + a = 3b^2 + b.$$ Prove that $a- b$, $2a + 2b + 1$, and $3a + 3b + 1$ are perfect squares.

2008 Dutch IMO TST, 4

Let $n$ be positive integer such that $\sqrt{1 + 12n^2}$ is an integer. Prove that $2 + 2\sqrt{1 + 12n^2}$ is the square of an integer.

2020 Taiwan TST Round 2, 2

Let $a$ and $b$ be two positive integers. Prove that the integer \[a^2+\left\lceil\frac{4a^2}b\right\rceil\] is not a square. (Here $\lceil z\rceil$ denotes the least integer greater than or equal to $z$.) [i]Russia[/i]

1995 Mexico National Olympiad, 4

Find $26$ elements of $\{1, 2, 3, ... , 40\}$ such that the product of two of them is never a square. Show that one cannot find $27$ such elements.

2021 Bangladeshi National Mathematical Olympiad, 7

For a positive integer $n$, let $s(n)$ and $c(n)$ be the number of divisors of $n$ that are perfect squares and perfect cubes respectively. A positive integer $n$ is called fair if $s(n)=c(n)>1$. Find the number of fair integers less than $100$.

2005 Bosnia and Herzegovina Junior BMO TST, 2

Let n be a positive integer. Prove the following statement: ”If $2 + 2\sqrt{1 + 28n^2}$ is an integer, then it is the square of an integer.”

2025 Bulgarian Spring Mathematical Competition, 10.3

In the cell $(i,j)$ of a table $n\times n$ is written the number $(i-1)n + j$. Determine all positive integers $n$ such that there are exactly $2025$ rows not containing a perfect square.

2010 Saudi Arabia Pre-TST, 3.2

Prove that among any nine divisors of $30^{2010}$ there are two whose product is a perfect square.

2021 Czech-Polish-Slovak Junior Match, 4

Find the smallest positive integer $n$ with the property that in the set $\{70, 71, 72,... 70 + n\}$ you can choose two different numbers whose product is the square of an integer.

2019 Saudi Arabia JBMO TST, 4

Let $p$ be a prime number. Show that $7^p+3p-4$ is not a perfect square.

2010 Contests, 3

Find all functions $g:\mathbb{N}\rightarrow\mathbb{N}$ such that \[\left(g(m)+n\right)\left(g(n)+m\right)\] is a perfect square for all $m,n\in\mathbb{N}.$ [i]Proposed by Gabriel Carroll, USA[/i]

2009 Abels Math Contest (Norwegian MO) Final, 1b

Show that the sum of three consecutive perfect cubes can always be written as the difference between two perfect squares.

2004 Mexico National Olympiad, 1

Find all the prime number $p, q$ and r with $p < q < r$, such that $25pq + r = 2004$ and $pqr + 1 $ is a perfect square.

1999 All-Russian Olympiad Regional Round, 10.5

Are there $10$ different integers such that all the sums made up of $9$ of them are perfect squares?

2003 Belarusian National Olympiad, 2

Let $P(x) =(x+1)^p (x-3)^q=x^n+a_1x^{n-1}+a_2x^{n-2}+...+a_{n-1}x+a_n$ where $p$ and $q$ are positive integers a) Given $a_1=a_2$, prove that $3n$ is a perfect square. b) Prove that there exist infinitely many pairs $(p, q)$ of positive integers p and q such that the equality $a_1=a_2$ is valid for the polynomial $P(x)$. (D. Bazylev)

1979 IMO Shortlist, 23

Find all natural numbers $n$ for which $2^8 +2^{11} +2^n$ is a perfect square.

2020 Olympic Revenge, 4

Let $n$ be a positive integer and $A$ a set of integers such that the set $\{x = a + b\ |\ a, b \in A\}$ contains $\{1^2, 2^2, \dots, n^2\}$. Prove that there is a positive integer $N$ such that if $n \ge N$, then $|A| > n^{0.666}$.