This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 38

2016 NZMOC Camp Selection Problems, 9

An $n$-tuple $(a_1, a_2 . . . , a_n)$ is [i]occasionally periodic[/i] if there exist a non-negative integer $i$ and a positive integer $p$ satisfying $i + 2p \le n$ and $a_{i+j} = a_{i+j+p}$ for every $j = 1, 2, . . . , p$. Let $k$ be a positive integer. Find the least positive integer $n$ for which there exists an $n$-tuple $(a_1, a_2 . . . , a_n)$ with elements from the set $\{1, 2, . . . , k\}$, which is not occasionally periodic but whose arbitrary extension $(a_1, a_2, . . . , a_n, a_{n+1})$ is occasionally periodic for any $a_{n+1} \in \{1, 2, . . . , k\}$.

1998 Tuymaada Olympiad, 6

Prove that the sequence of the first digits of the numbers in the form $2^n+3^n$ is nonperiodic.

1998 Belarus Team Selection Test, 1

Do there exist functions $f : R \to R$ and $g : R \to R$, $g$ being periodic, such that $$x^3= f(\lfloor x \rfloor ) + g(x)$$ for all real $x$ ?

2014 Switzerland - Final Round, 9

The sequence of integers $a_1, a_2, ,,$ is defined as follows: $$a_n=\begin{cases} 0\,\,\,\, if\,\,\,\, n\,\,\,\, has\,\,\,\, an\,\,\,\, even\,\,\,\, number\,\,\,\, of\,\,\,\, divisors\,\,\,\, greater\,\,\,\, than\,\,\,\, 2014 \\ 1 \,\,\,\, if \,\,\,\, n \,\,\,\, has \,\,\,\, an \,\,\,\, odd \,\,\,\, number \,\,\,\, of \,\,\,\, divisors \,\,\,\, greater \,\,\,\, than \,\,\,\, 2014\end{cases}$$ Show that the sequence $a_n$ never becomes periodic.

1975 Chisinau City MO, 88

Tags: periodic , algebra
Prove that the fraction $0.123456789101112...$ is not periodic.

1990 Tournament Of Towns, (271) 5

The numerical sequence $\{x_n\}$ satisfies the condition $$x_{n+1}=|x_n|-x_{n-1}$$ for all $n > 1$. Prove that the sequence is periodic with period $9$, i.e. for any $n > 1$ we have $x_n = x_{n+9}$. (M Kontsevich, Moscow)

1998 Switzerland Team Selection Test, 10

5. Let $f : R \to R$ be a function that satisfies for all $x \in R$ (i) $| f(x)| \le 1$, and (ii) $f\left(x+\frac{13}{42}\right)+ f(x) = f\left(x+\frac{1}{6}\right)+f\left(x+\frac{1}{7}\right)$ Prove that $f$ is a periodic function

2015 Brazil Team Selection Test, 1

Tags: function , odd , even , periodic , algebra
Let's call a function $f : R \to R$ [i]cool[/i] if there are real numbers $a$ and $b$ such that $f(x + a)$ is an even function and $f(x + b)$ is an odd function. (a) Prove that every cool function is periodic. (b) Give an example of a periodic function that is not cool.

2006 Argentina National Olympiad, 1

Let $A$ be the set of positive real numbers less than $1$ that have a periodic decimal expansion with a period of ten different digits. Find a positive integer $n$ greater than $1$ and less than $10^{10}$ such that $na-a$ is a positive integer for all $a$. of set $A$.

2015 Indonesia MO Shortlist, A1

Function $f: R\to R$ is said periodic , if $f$ is not a constant function and there is a number real positive $p$ with the property of $f (x) = f (x + p)$ for every $x \in R$. The smallest positive real number p which satisfies the condition $f (x) = f (x + p)$ for each $x \in R$ is named period of $f$. Given $a$ and $b$ real positive numbers, show that there are periodic functions $f_1$ and $f_2$, with periods $a$ and $b$ respectively, so that $f_1 (x)\cdot f_2 (x)$ is also a periodic function.

2001 All-Russian Olympiad Regional Round, 11.5

Given a sequence $\{x_k\}$ such that $x_1 = 1$, $x_{n+1} = n \sin x_n+ 1$. Prove that the sequence is non-periodic.

1994 Tournament Of Towns, (414) 2

Consider a sequence of numbers between $0$ and $1$ in which the next number after $x$ is $1 - |1 - 2x|$. ($|x| = x$ if$ x \ge 0$, $|x| = -x$ if $x < 0$.) Prove that (a) if the first number of the sequence is rational, then the sequence will be periodic (i.e. the terms repeat with a certain cycle length after a certain term in the sequence); (b) if the sequence is periodic, then the first number is rational. (G Shabat)

2023 Canadian Mathematical Olympiad Qualification, 4

Let $a_1$, $a_2$, $ ...$ be a sequence of numbers, each either $1$ or $-1$. Show that if $$\frac{a_1}{3}+\frac{a_2}{3^2} + ... =\frac{p}{q}$$ for integers $p$ and $q$ such that $3$ does not divide $q$, then the sequence $a_1$, $a_2$, $ ...$ is periodic; that is, there is some positive integer $n$ such that $a_i = a_{n+i}$ for $i = 1$, $2$,$...$.