This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 175

2013 Saudi Arabia Pre-TST, 4.3

How many permutations $(s_1, s_2,...,s_n) $of $(1,2 ,...,n)$ are there satisfying the condition $s_i > s_j$ for all $i \ge j + 3$ when $n = 5$ and when $n = 7$?

2020 IMEO, Problem 4

Tags: game , permutation
Anna and Ben are playing with a permutation $p$ of length $2020$, initially $p_i = 2021 - i$ for $1\le i \le 2020$. Anna has power $A$, and Ben has power $B$. Players are moving in turns, with Anna moving first. In his turn player with power $P$ can choose any $P$ elements of the permutation and rearrange them in the way he/she wants. Ben wants to sort the permutation, and Anna wants to not let this happen. Determine if Ben can make sure that the permutation will be sorted (of form $p_i = i$ for $1\le i \le 2020$) in finitely many turns, if a) $A = 1000, B = 1000$ b) $A = 1000, B = 1001$ c) $A = 1000, B = 1002$ [i]Anton Trygub[/i]

2007 Korea Junior Math Olympiad, 3

Consider the string of length $6$ composed of three characters $a, b, c$. For each string, if two $a$s are next to each other, or two $b$s are next to each other, then replace $aa$ by $b$, and replace $bb$ by $a$. Also, if $a$ and $b$ are next to each other, or two $c$s are next to each other, remove all two of them (i.e. delete $ab, ba, cc$). Determine the number of strings that can be reduced to $c$, the string of length $1$, by the reducing processes mentioned above.

1957 Kurschak Competition, 3

What is the largest possible value of $|a_1 - 1| + |a_2-2|+...+ |a_n- n|$ where $a_1, a_2,..., a_n$ is a permutation of $1,2,..., n$?

2019 Romanian Master of Mathematics Shortlist, C3

Fix an odd integer $n > 1$. For a permutation $p$ of the set $\{1,2,...,n\}$, let S be the number of pairs of indices $(i, j)$, $1 \le i \le j \le n$, for which $p_i +p_{i+1} +...+p_j$ is divisible by $n$. Determine the maximum possible value of $S$. Croatia

2011 IFYM, Sozopol, 4

Let $n$ be some natural number. One boss writes $n$ letters a day numerated from 1 to $n$ consecutively. When he writes a letter he piles it up (on top) in a box. When his secretary is free, she gets the letter on the top of the pile and prints it. Sometimes the secretary isn’t able to print the letter before her boss puts another one or more on the pile in the box. Though she is always able to print all of the letters at the end of the day. A permutation is called [i]“printable”[/i] if it is possible for the letters to be printed in this order. Find a formula for the number of [i]“printable”[/i] permutations.

2014 IFYM, Sozopol, 4

Let $A$ be the set of permutations $a=(a_1,a_2,…,a_n)$ of $M=\{1,2,…n\}$ with the following property: There doesn’t exist a subset $S$ of $M$ such that $a(S)=S$. For $\forall$ such permutation $a$ let $d(a)=\sum_{k=1}^n (a_k-k)^2$ . Determine the smallest value of $d(a)$.

2012 Dutch IMO TST, 4

Let $n$ be a positive integer divisible by $4$. We consider the permutations $(a_1, a_2,...,a_n)$ of $(1,2,..., n)$ having the following property: for each j we have $a_i + j = n + 1$ where $i = a_j$ . Prove that there are exactly $\frac{ (\frac12 n)!}{(\frac14 n)!}$ such permutations.

1986 IMO Shortlist, 8

From a collection of $n$ persons $q$ distinct two-member teams are selected and ranked $1, \cdots, q$ (no ties). Let $m$ be the least integer larger than or equal to $2q/n$. Show that there are $m$ distinct teams that may be listed so that : [b](i)[/b] each pair of consecutive teams on the list have one member in common and [b](ii)[/b] the chain of teams on the list are in rank order. [i]Alternative formulation.[/i] Given a graph with $n$ vertices and $q$ edges numbered $1, \cdots , q$, show that there exists a chain of $m$ edges, $m \geq \frac{2q}{n}$ , each two consecutive edges having a common vertex, arranged monotonically with respect to the numbering.

2000 China National Olympiad, 1

Given an ordered $n$-tuple $A=(a_1,a_2,\cdots ,a_n)$ of real numbers, where $n\ge 2$, we define $b_k=\max{a_1,\ldots a_k}$ for each k. We define $B=(b_1,b_2,\cdots ,b_n)$ to be the “[i]innovated tuple[/i]” of $A$. The number of distinct elements in $B$ is called the “[i]innovated degree[/i]” of $A$. Consider all permutations of $1,2,\ldots ,n$ as an ordered $n$-tuple. Find the arithmetic mean of the first term of the permutations whose innovated degrees are all equal to $2$

1997 ITAMO, 5

Let $X$ be the set of natural numbers whose all digits in the decimal representation are different. For $n \in N$, denote by $A_n$ the set of numbers whose digits are a permutation of the digits of $n$, and $d_n$ be the greatest common divisor of the numbers in $A_n$. (For example, $A_{1120} =\{112,121,...,2101,2110\}$, so $d_{1120} = 1$.) Find the maximum possible value of $d_n$.

2009 IMO Shortlist, 5

Let $P(x)$ be a non-constant polynomial with integer coefficients. Prove that there is no function $T$ from the set of integers into the set of integers such that the number of integers $x$ with $T^n(x)=x$ is equal to $P(n)$ for every $n\geq 1$, where $T^n$ denotes the $n$-fold application of $T$. [i]Proposed by Jozsef Pelikan, Hungary[/i]

1986 IMO Longlists, 74

From a collection of $n$ persons $q$ distinct two-member teams are selected and ranked $1, \cdots, q$ (no ties). Let $m$ be the least integer larger than or equal to $2q/n$. Show that there are $m$ distinct teams that may be listed so that : [b](i)[/b] each pair of consecutive teams on the list have one member in common and [b](ii)[/b] the chain of teams on the list are in rank order. [i]Alternative formulation.[/i] Given a graph with $n$ vertices and $q$ edges numbered $1, \cdots , q$, show that there exists a chain of $m$ edges, $m \geq \frac{2q}{n}$ , each two consecutive edges having a common vertex, arranged monotonically with respect to the numbering.

2011 Gheorghe Vranceanu, 1

Let $ \sigma_1 ,\sigma_2 $ be two permutations of order $ n $ such that $ \sigma_1 (k)=\sigma_2 (n-k+1) $ for $ k=\overline{1,n} . $ Prove that the number of inversions of $ \sigma_1 $ plus the number of inversions of $ \sigma_2 $ is $ \frac{n(n+1)}{2} . $

2018 Romania Team Selection Tests, 3

For every integer $n \ge 2$ let $B_n$ denote the set of all binary $n$-nuples of zeroes and ones, and split $B_n$ into equivalence classes by letting two $n$-nuples be equivalent if one is obtained from the another by a cyclic permutation.(for example 110, 011 and 101 are equivalent). Determine the integers $n \ge 2$ for which $B_n$ splits into an odd number of equivalence classes.

1954 Putnam, A1

Let $n$ be an odd integer greater than $1.$ Let $A$ be an $n\times n$ symmetric matrix such that each row and column consists of some permutation of the integers $1,2, \ldots, n.$ Show that each of the integers $1,2, \ldots, n$ must appear in the main diagonal of $A$.

2006 Korea Junior Math Olympiad, 1

$a_1, a_2,...,a_{2006}$ is a permutation of $1,2,...,2006$. Prove that $\prod_{i = 1}^{2006} (a_{i}^2-i) $ is a multiple of $3$. ($0$ is counted as a multiple of $3$)

2010 Germany Team Selection Test, 3

Let $P(x)$ be a non-constant polynomial with integer coefficients. Prove that there is no function $T$ from the set of integers into the set of integers such that the number of integers $x$ with $T^n(x)=x$ is equal to $P(n)$ for every $n\geq 1$, where $T^n$ denotes the $n$-fold application of $T$. [i]Proposed by Jozsef Pelikan, Hungary[/i]

2010 Postal Coaching, 1

Let $n \in \mathbb N$ and $A_n$ set of all permutations $(a_1, \ldots, a_n)$ of the set $\{1, 2, \ldots , n\}$ for which \[k|2(a_1 + \cdots+ a_k), \text{ for all } 1 \leq k \leq n.\] Find the number of elements of the set $A_n$. [i]Proposed by Vidan Govedarica, Serbia[/i]

1975 IMO, 1

We consider two sequences of real numbers $x_{1} \geq x_{2} \geq \ldots \geq x_{n}$ and $\ y_{1} \geq y_{2} \geq \ldots \geq y_{n}.$ Let $z_{1}, z_{2}, .\ldots, z_{n}$ be a permutation of the numbers $y_{1}, y_{2}, \ldots, y_{n}.$ Prove that $\sum \limits_{i=1}^{n} ( x_{i} -\ y_{i} )^{2} \leq \sum \limits_{i=1}^{n}$ $( x_{i} - z_{i})^{2}.$

2024 Bangladesh Mathematical Olympiad, P6

Let $a_1, a_2, \ldots, a_{2024}$ be a permutation of $1, 2, \ldots, 2024$. Find the minimum possible value of\[\sum_{i=1} ^{2023} \Big[(a_i+a_{i+1})\Big(\frac{1}{a_i}+\frac{1}{a_{i+1}}\Big)+\frac{1}{a_ia_{i+1}}\Big]\] [i]Proposed by Md. Ashraful Islam Fahim[/i]

2012 BMT Spring, 9

A permutation of a set is a bijection from the set to itself. For example, if $\sigma$ is the permutation $1 7\mapsto 3$, $2 \mapsto 1$, and $3 \mapsto 2$, and we apply it to the ordered triplet $(1, 2, 3)$, we get the reordered triplet $(3, 1, 2)$. Let $\sigma$ be a permutation of the set $\{1, ... , n\}$. Let $$\theta_k(m) = \begin{cases} m + 1 & \text{for} \,\, m < k\\ 1 & \text{for} \,\, m = k\\ m & \text{for} \,\, m > k\end{cases}$$ Call a finite sequence $\{a_i\}^{j}_{i=1}$ a disentanglement of $\sigma$ if $\theta_{a_j} \circ ...\circ \theta_{a_j} \circ \sigma$ is the identity permutation. For example, when $\sigma = (3, 2, 1)$, then $\{2, 3\}$ is a disentaglement of $\sigma$. Let $f(\sigma)$ denote the minimum number $k$ such that there is a disentanglement of $\sigma$ of length $k$. Let $g(n)$ be the expected value for $f(\sigma)$ if $\sigma$ is a random permutation of $\{1, ... , n\}$. What is $g(6)$?

2018 Puerto Rico Team Selection Test, 2

Let $A = \{a_1, a_2, a_3, a_4, a_5\}$ be a set of $5$ positive integers. Show that for any rearrangement of $A$, $a_{i1}$, $a_{i2}$, $a_{i3}$, $a_{i4}$, $a_{i5}$, the product $$(a_{i1} -a_1) (a_{i2} -a_2) (a_{i3} -a_3) (a_{i4} -a_4) (a_{i5} -a_5)$$ is always even.

1980 Tournament Of Towns, (003) 3

If permutations of the numbers $2, 3,4,..., 102$ are denoted by $a_i,a_2, a_3,...,a_{101}$, find all such permutations in which $a_k$ is divisible by $k$ for all $k$.

2017 Kyiv Mathematical Festival, 1

Several dwarves were lined up in a row, and then they lined up in a row in a different order. Is it possible that exactly one third of the dwarves have both of their neighbours remained and exactly one third of the dwarves have only one of their neighbours remained, if the number of the dwarves is a) 6; b) 9?