This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 175

1992 India National Olympiad, 4

Find the number of permutations $( p_1, p_2, p_3 , p_4 , p_5 , p_6)$ of $1, 2 ,3,4,5,6$ such that for any $k, 1 \leq k \leq 5$, $(p_1, \ldots, p_k)$ does not form a permutation of $1 , 2, \ldots, k$.

2011 IFYM, Sozopol, 8

Let $S$ be the set of all 9-digit natural numbers, which are written only with the digits 1, 2, and 3. Find all functions $f:S\rightarrow \{1,2,3\}$ which satisfy the following conditions: (1) $f(111111111)=1$, $f(222222222)=2$, $f(333333333)=3$, $f(122222222)=1$; (2) If $x,y\in S$ differ in each digit position, then $f(x)\neq f(y)$.

1969 IMO Shortlist, 31

$(GDR 3)$ Find the number of permutations $a_1, \cdots, a_n$ of the set $\{1, 2, . . ., n\}$ such that $|a_i - a_{i+1}| \neq 1$ for all $i = 1, 2, . . ., n - 1.$ Find a recurrence formula and evaluate the number of such permutations for $n \le 6.$

1977 Germany Team Selection Test, 1

We consider two sequences of real numbers $x_{1} \geq x_{2} \geq \ldots \geq x_{n}$ and $\ y_{1} \geq y_{2} \geq \ldots \geq y_{n}.$ Let $z_{1}, z_{2}, .\ldots, z_{n}$ be a permutation of the numbers $y_{1}, y_{2}, \ldots, y_{n}.$ Prove that $\sum \limits_{i=1}^{n} ( x_{i} -\ y_{i} )^{2} \leq \sum \limits_{i=1}^{n}$ $( x_{i} - z_{i})^{2}.$

2009 Danube Mathematical Competition, 5

Let $\sigma, \tau$ be two permutations of the quantity $\{1, 2,. . . , n\}$. Prove that there is a function $f: \{1, 2,. . . , n\} \to \{-1, 1\}$ such that for any $1 \le i \le j \le n$, we have $\left|\sum_{k=i}^{j} f(\sigma (k)) \right| \le 2$ and $\left|\sum_{k=i}^{j} f(\tau (k))\right| \le 2$

KoMaL A Problems 2019/2020, A. 759

We choose a random permutation of $1,2,\ldots,n$ with uniform distribution. Prove that the expected value of the length of the longest increasing subsequence in the permutation is at least $\sqrt{n}.$

2024 Australian Mathematical Olympiad, P3

Let $a_1, a_2, \ldots, a_n$ be positive reals for $n \geq 2$. For a permutation $(b_1, b_2, \ldots, b_n)$ of $(a_1, a_2, \ldots, a_n)$, define its $\textit{score}$ to be $$\sum_{i=1}^{n-1}\frac{b_i^2}{b_{i+1}}.$$ Show that some two permutations of $(a_1, a_2, \ldots, a_n)$ have scores that differ by at most $3|a_1-a_n|$.

2023 Indonesia MO, 6

Determine the number of permutations $a_1, a_2, \dots, a_n$ of $1, 2, \dots, n$ such that for every positive integer $k$ with $1 \le k \le n$, there exists an integer $r$ with $0 \le r \le n - k$ which satisfies \[ 1 + 2 + \dots + k = a_{r+1} + a_{r+2} + \dots + a_{r+k}. \]

2021 Kyiv City MO Round 1, 8.3

The $1 \times 1$ cells located around the perimeter of a $3 \times 3$ square are filled with the numbers $1, 2, \ldots, 8$ so that the sums along each of the four sides are equal. In the upper left corner cell is the number $8$, and in the upper left is the number $6$ (see the figure below). [img]https://i.ibb.co/bRmd12j/Kyiv-MO-2021-Round-1-8-2.png[/img] How many different ways to fill the remaining cells are there under these conditions? [i]Proposed by Mariia Rozhkova[/i]

2025 Taiwan TST Round 1, N

Find all positive integers $n$ such that there exist two permutations $a_0,a_1,\ldots,a_{n-1}$ and $b_0,b_1,\ldots,b_{n-1}$ of the set $\lbrace0,1,\ldots,n-1\rbrace$, satisfying the condition $$ia_i\equiv b_i\pmod{n}$$ for all $0\le i\le n-1$. [i]Proposed by Fysty[/i]

2011 Ukraine Team Selection Test, 12

Let $ n $ be a natural number. Consider all permutations $ ({{a} _ {1}}, \ \ldots, \ {{a} _ {2n}}) $ of the first $ 2n $ natural numbers such that the numbers $ | {{a} _ {i +1}} - {{a} _ {i}} |, \ i = 1, \ \ldots, \ 2n-1, $ are pairwise different. Prove that $ {{a} _ {1}} - {{a} _ {2n}} = n $ if and only if $ 1 \le {{a} _ {2k}} \le n $ for all $ k = 1, \ \ldots, \ n $.

2015 Canadian Mathematical Olympiad Qualification, 3

Let $N$ be a 3-digit number with three distinct non-zero digits. We say that $N$ is [i]mediocre[/i] if it has the property that when all six 3-digit permutations of $N$ are written down, the average is $N$. For example, $N = 481$ is mediocre, since it is the average of $\{418, 481, 148, 184, 814, 841\}$. Determine the largest mediocre number.

2016 Estonia Team Selection Test, 9

Let $n$ be a positive integer such that there exists a positive integer that is less than $\sqrt{n}$ and does not divide $n$. Let $(a_1, . . . , a_n)$ be an arbitrary permutation of $1, . . . , n$. Let $a_{i1} < . . . < a_{ik}$ be its maximal increasing subsequence and let $a_{j1} > . . . > a_{jl}$ be its maximal decreasing subsequence. Prove that tuples $(a_{i1}, . . . , a_{ik})$ and $(a_{j1}, . . . , a_{jl} )$ altogether contain at least one number that does not divide $n$.

2008 IMO Shortlist, 2

Let $n \in \mathbb N$ and $A_n$ set of all permutations $(a_1, \ldots, a_n)$ of the set $\{1, 2, \ldots , n\}$ for which \[k|2(a_1 + \cdots+ a_k), \text{ for all } 1 \leq k \leq n.\] Find the number of elements of the set $A_n$. [i]Proposed by Vidan Govedarica, Serbia[/i]

1974 Czech and Slovak Olympiad III A, 3

Let $m\ge10$ be any positive integer such that all its decimal digits are distinct. Denote $f(m)$ sum of positive integers created by all non-identical permutations of digits of $m,$ e.g. \[f(302)=320+023+032+230+203=808.\] Determine all positive integers $x$ such that \[f(x)=138\,012.\]

2017 Kyiv Mathematical Festival, 1

Several dwarves were lined up in a row, and then they lined up in a row in a different order. Is it possible that exactly one third of the dwarves have two new neighbours and exactly one third of the dwarves have only one new neighbour, if the number of the dwarves is a) 9; b) 12?

2019 Durer Math Competition Finals, 5

How many permutations $s$ does the set $\{1,2,..., 15\}$ have with the following properties: for every $1 \le k \le 13$ we have $s(k) < s(k+2)$ and for every $1 \le k \le 12$ we have $s(k) < s(k+3)$?

1980 Swedish Mathematical Competition, 2

$a_1$, $a_2$, $a_3$, $a_4$, $a_5$, $a_6$, $a_7$ and $b_1$, $b_2$, $b_3$, $b_4$, $b_5$, $b_6$, $b_7$ are two permutations of $1, 2, 3, 4, 5, 6, 7$. Show that $|a_1 - b_1|$, $|a_2 - b_2|$, $|a_3 - b_3|$, $|a_4 - b_4|$, $|a_5 - b_5|$, $|a_6 - b_6|$, $|a_7 - b_7|$ are not all different.

2020 OMMock - Mexico National Olympiad Mock Exam, 2

We say that a permutation $(a_1, \dots, a_n)$ of $(1, 2, \dots, n)$ is good if the sums $a_1 + a_2 + \dots + a_i$ are all distinct modulo $n$. Prove that there exists a positive integer $n$ such that there are at least $2020$ good permutations of $(1, 2, \dots, n)$. [i]Proposed by Ariel García[/i]

2018 Brazil Undergrad MO, 3

How many permutations $a_1, a_2, a_3, a_4$ of $1, 2, 3, 4$ satisfy the condition that for $k = 1, 2, 3,$ the list $a_1,. . . , a_k$ contains a number greater than $k$?

2010 Dutch BxMO TST, 5

For any non-negative integer $n$, we say that a permutation $(a_0,a_1,...,a_n)$ of $\{0,1,..., n\} $ is quadratic if $k + a_k$ is a square for $k = 0, 1,...,n$. Show that for any non-negative integer $n$, there exists a quadratic permutation of $\{0,1,..., n\}$.

2016 Saudi Arabia Pre-TST, 2.1

1) Prove that there are infinitely many positive integers $n$ such that there exists a permutation of $1, 2, 3, . . . , n$ with the property that the difference between any two adjacent numbers is equal to either $2015$ or $2016$. 2) Let $k$ be a positive integer. Is the statement in 1) still true if we replace the numbers $2015$ and $2016$ by $k$ and $k + 2016$, respectively?

2007 Nicolae Păun, 3

In the following exercise, $ C_G (e) $ denotes the centralizer of the element $ e $ in the group $ G. $ [b]a)[/b] Prove that $ \max_{\sigma\in S_n\setminus\{1\}} \left| C_{S_n} (\sigma ) \right| <\frac{n!}{2} , $ for any natural number $ n\ge 4. $ [b]b)[/b] Show that $ \lim_{n\to\infty} \left(\frac{1}{n!}\cdot\max_{\sigma\in S_n\setminus\{1\}} \left| C_{S_n} (\sigma ) \right|\right) =0. $ [i]Alexandru Cioba[/i]

1977 Germany Team Selection Test, 1

We consider two sequences of real numbers $x_{1} \geq x_{2} \geq \ldots \geq x_{n}$ and $\ y_{1} \geq y_{2} \geq \ldots \geq y_{n}.$ Let $z_{1}, z_{2}, .\ldots, z_{n}$ be a permutation of the numbers $y_{1}, y_{2}, \ldots, y_{n}.$ Prove that $\sum \limits_{i=1}^{n} ( x_{i} -\ y_{i} )^{2} \leq \sum \limits_{i=1}^{n}$ $( x_{i} - z_{i})^{2}.$

2019 Cono Sur Olympiad, 3

Let $n\geq 3$ an integer. Determine whether there exist permutations $(a_1,a_2, \ldots, a_n)$ of the numbers $(1,2,\ldots, n)$ and $(b_1, b_2, \ldots, b_n)$ of the numbers $(n+1,n+2,\ldots, 2n)$ so that $(a_1b_1, a_2b_2, \ldots a_nb_n)$ is a strictly increasing arithmetic progression.