This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 396

1999 National Olympiad First Round, 27

Points on a square with side length $ c$ are either painted blue or red. Find the smallest possible value of $ c$ such that how the points are painted, there exist two points with same color having a distance not less than $ \sqrt {5}$. $\textbf{(A)}\ \frac {\sqrt {10} }{2} \qquad\textbf{(B)}\ 2 \qquad\textbf{(C)}\ \sqrt {5} \qquad\textbf{(D)}\ 2\sqrt {2} \qquad\textbf{(E)}\ \text{None}$

1985 IberoAmerican, 2

To each positive integer $ n$ it is assigned a non-negative integer $f(n)$ such that the following conditions are satisfied: (1) $ f(rs) \equal{} f(r)\plus{}f(s)$ (2) $ f(n) \equal{} 0$, if the first digit (from right to left) of $ n$ is 3. (3) $ f(10) \equal{} 0$. Find $f(1985)$. Justify your answer.

2004 Manhattan Mathematical Olympiad, 1

Seven line segments, with lengths no greater than $10$ inches, and no shorter than $1$ inch, are given. Show that one can choose three of them to represent the sides of a triangle. Give an example which shows that if only six segments are used, then such a choice may be impossible.

2008 Peru Iberoamerican Team Selection Test, P3

In the coordinate plane consider the set $ S$ of all points with integer coordinates. For a positive integer $ k$, two distinct points $A$, $ B\in S$ will be called $ k$-[i]friends[/i] if there is a point $ C\in S$ such that the area of the triangle $ ABC$ is equal to $ k$. A set $ T\subset S$ will be called $ k$-[i]clique[/i] if every two points in $ T$ are $ k$-friends. Find the least positive integer $ k$ for which there exits a $ k$-clique with more than 200 elements. [i]Proposed by Jorge Tipe, Peru[/i]

2014 IMO Shortlist, C3

Let $n \ge 2$ be an integer. Consider an $n \times n$ chessboard consisting of $n^2$ unit squares. A configuration of $n$ rooks on this board is [i]peaceful[/i] if every row and every column contains exactly one rook. Find the greatest positive integer $k$ such that, for each peaceful configuration of $n$ rooks, there is a $k \times k$ square which does not contain a rook on any of its $k^2$ unit squares.

2009 Germany Team Selection Test, 1

In the coordinate plane consider the set $ S$ of all points with integer coordinates. For a positive integer $ k$, two distinct points $A$, $ B\in S$ will be called $ k$-[i]friends[/i] if there is a point $ C\in S$ such that the area of the triangle $ ABC$ is equal to $ k$. A set $ T\subset S$ will be called $ k$-[i]clique[/i] if every two points in $ T$ are $ k$-friends. Find the least positive integer $ k$ for which there exits a $ k$-clique with more than 200 elements. [i]Proposed by Jorge Tipe, Peru[/i]

2009 All-Russian Olympiad, 5

Given strictly increasing sequence $ a_1<a_2<\dots$ of positive integers such that each its term $ a_k$ is divisible either by 1005 or 1006, but neither term is divisible by $ 97$. Find the least possible value of maximal difference of consecutive terms $ a_{i\plus{}1}\minus{}a_i$.

1999 Mediterranean Mathematics Olympiad, 2

A plane figure of area $A > n$ is given, where $n$ is a positive integer. Prove that this figure can be placed onto a Cartesian plane so that it covers at least $n+1$ points with integer coordinates.

2007 Nicolae Păun, 4

$ 20 $ discs of radius $ 1 $ are bounded by a circle of radius $ 10. $ Show that in the interior of this circle is sufficient space to insert $ 7 $ discs of radius $ \frac{1}{3} $ that doesn't touch any other disc. [i]Flavian Georgescu[/i]

1996 Moldova Team Selection Test, 12

Suppose that in a certain society, each pair of persons can be classified as either [i]amicable [/i]or [i]hostile[/i]. We shall say that each member of an amicable pair is a [i]friend[/i] of the other, and each member of a hostile pair is a [i]foe[/i] of the other. Suppose that the society has $\, n \,$ persons and $\, q \,$ amicable pairs, and that for every set of three persons, at least one pair is hostile. Prove that there is at least one member of the society whose foes include $\, q(1 - 4q/n^2) \,$ or fewer amicable pairs.

2004 National Olympiad First Round, 3

At most how many elements does a set have such that all elements are less than $102$ and it doesn't contain the sum of any two elements? $ \textbf{(A)}\ 49 \qquad\textbf{(B)}\ 50 \qquad\textbf{(C)}\ 51 \qquad\textbf{(D)}\ 54 \qquad\textbf{(E)}\ 62 $

1990 India Regional Mathematical Olympiad, 1

Two boxes contain between them 65 balls of several different sizes. Each ball is white, black, red or yellow. If you take any five balls of the same colour, at least two of them will always be of the same size(radius). Prove that there are at least three ball which lie in the same box have the same colour and have the same size(radius).

2000 USA Team Selection Test, 5

Let $n$ be a positive integer. A $corner$ is a finite set $S$ of ordered $n$-tuples of positive integers such that if $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n$ are positive integers with $a_k \geq b_k$ for $k = 1, 2, \ldots, n$ and $(a_1, a_2, \ldots, a_n) \in S$, then $(b_1, b_2, \ldots, b_n) \in S$. Prove that among any infinite collection of corners, there exist two corners, one of which is a subset of the other one.

2001 USA Team Selection Test, 3

For a set $S$, let $|S|$ denote the number of elements in $S$. Let $A$ be a set of positive integers with $|A| = 2001$. Prove that there exists a set $B$ such that (i) $B \subseteq A$; (ii) $|B| \ge 668$; (iii) for any $u, v \in B$ (not necessarily distinct), $u+v \not\in B$.

2007 Iran Team Selection Test, 2

Let $A$ be the largest subset of $\{1,\dots,n\}$ such that for each $x\in A$, $x$ divides at most one other element in $A$. Prove that \[\frac{2n}3\leq |A|\leq \left\lceil \frac{3n}4\right\rceil. \]

2013 ELMO Shortlist, 3

Let $a_1,a_2,...,a_9$ be nine real numbers, not necessarily distinct, with average $m$. Let $A$ denote the number of triples $1 \le i < j < k \le 9$ for which $a_i + a_j + a_k \ge 3m$. What is the minimum possible value of $A$? [i]Proposed by Ray Li[/i]

1973 IMO Longlists, 6

Let $P_i (x_i, y_i)$ (with $i = 1, 2, 3, 4, 5$) be five points with integer coordinates, no three collinear. Show that among all triangles with vertices at these points, at least three have integer areas.

2005 USAMO, 5

Let $n$ be an integer greater than 1. Suppose $2n$ points are given in the plane, no three of which are collinear. Suppose $n$ of the given $2n$ points are colored blue and the other $n$ colored red. A line in the plane is called a [i]balancing line[/i] if it passes through one blue and one red point and, for each side of the line, the number of blue points on that side is equal to the number of red points on the same side. Prove that there exist at least two balancing lines.

PEN P Problems, 42

Prove that for each positive integer $K$ there exist infinitely many even positive integers which can be written in more than $K$ ways as the sum of two odd primes.

1997 Junior Balkan MO, 1

Show that given any 9 points inside a square of side 1 we can always find 3 which form a triangle with area less than $\frac 18$. [i]Bulgaria[/i]

2006 Romania National Olympiad, 2

A square of side $n$ is formed from $n^2$ unit squares, each colored in red, yellow or green. Find minimal $n$, such that for each coloring, there exists a line and a column with at least 3 unit squares of the same color (on the same line or column).

1998 IMO Shortlist, 3

Determine the smallest integer $n\geq 4$ for which one can choose four different numbers $a,b,c$ and $d$ from any $n$ distinct integers such that $a+b-c-d$ is divisible by $20$.

2004 Canada National Olympiad, 5

Let $ T$ be the set of all positive integer divisors of $ 2004^{100}$. What is the largest possible number of elements of a subset $ S$ of $ T$ such that no element in $ S$ divides any other element in $ S$?

2010 China Team Selection Test, 3

Let $k>1$ be an integer, set $n=2^{k+1}$. Prove that for any positive integers $a_1<a_2<\cdots<a_n$, the number $\prod_{1\leq i<j\leq n}(a_i+a_j)$ has at least $k+1$ different prime divisors.

1999 Croatia National Olympiad, Problem 4

Given nine positive integers, is it always possible to choose four different numbers $a,b,c,d$ such that $a+b$ and $c+d$ are congruent modulo $20$?