This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

1994 Tournament Of Towns, (421) 2

Two circles, one inside the other, are given in the plane. Construct a point $O$, inside the inner circle, such that if a ray from $O$ cuts the circles at $A$ and $B$ respectively, then the ratio $OA/OB$ is constant. (Folklore)

1951 Moscow Mathematical Olympiad, 198

* On a plane, given points $A, B, C$ and angles $\angle D, \angle E, \angle F$ each less than $180^o$ and the sum equal to $360^o$, construct with the help of ruler and protractor a point $O$ such that $\angle AOB = \angle D, \angle BOC = \angle E$ and $\angle COA = \angle F.$